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Abstract. Silicate weathering, which is of great importance regulating global carbon cycle, has been 

found to be affected by complicate factors including climate, tectonics, vegetation, and etc. However, the 

exact transfer function between these factors and silicate weathering rate is still unclear, leading to large 

model-data discrepancies of the CO2 consumption associated with silicate weathering. Here we propose 

a simple parameterization for the influence of vegetation cover on erosion rate to improve the model-20 

data comparison based on a state-of-the-art silicate weathering model. We found out that the current 

weathering model tends to overestimate the silicate weathering fluxes in the tropical region, which can 

hardly be explained by either the uncertainties in climate and geomorphological conditions or the 

optimization of model parameters. We show that such an overestimation of tropic weathering rate can be 

rectified significantly by considering the shielding effect of vegetation cover on the erosion rate of the 25 

leached soils considering that the geographic distribution of such soils is coincident with regions with 

the highest leaf area index (LAI). We propose that the heavy vegetation in the tropical region likely slows 

down the erosion rate, much more so than thought before, through reducing extreme stream flow in 

response to precipitation. The silicate weathering model thus revised gives a smaller global weathering 

flux which is arguably more consistent with the observed value and the recently reconstructed global 30 

outgassing, both of which are subject to uncertainties. The model is also easily applicable to the deep-

time Earth to investigate the influence of land plant on global biogeochemical cycle.  
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1. Introduction 

On geological timescales, the Earth’s climate is primarily controlled by the atmospheric CO2 35 

concentration (pCO2); the evolution of the Sun – its brightness increases with time – also plays an 

important role on the timescale of a hundred million years (100 Myr), but in a temporally smooth way 

(2023). However, how the sources and sinks of pCO2 varied in the Earth’s history remain elusive (Zhang 

et al., 2022b; Mills et al., 2021). Large uncertainties exist even in the estimate of their present-day 

magnitude (Hilton and West, 2020).   40 

The sources of carbon include outgassing from the mid-ocean ridges, the subduction zones, the 

hotspots, and the faults and fractures within continents, and the oxidation of organic carbon, while the 

sinks include only silicate weathering and the burial of organic carbon (Hilton and West, 2020; Zhao et 

al., 2022). The atmospheric and oceanic carbon reservoirs vary in pace on geological timescale and can 

be considered as one. Due to the small size of the ocean-atmosphere carbon reservoir (~40,000 Pg) 45 

compared to that of the lithosphere (~7.5×107 Pg; (Lee et al., 2019; Berner, 2004; Canadell et al., 2023)), 

a small imbalance between the carbon sources and sinks can lead to large variations in pCO2 in a 

relatively short time (Berner and Kothavala, 2001; Berner, 1991; Walker et al., 1981; Berner, 2004). 

Therefore, it is important to determine the precise magnitude of the carbon sources and sinks if we want 

to eventually understand how and why the Earth’s climate varies. Here, we will focus on the global 50 

silicate weathering and try to improve the numerical calculation of its magnitude under present-day 

conditions. 

The rate of silicate weathering is affected by the composition and physical erosion of surface rocks, 

pCO2, surface temperature, and terrestrial runoff (Gaillardet et al., 1999; Raymo and Ruddiman, 1992; 

Brantley et al., 2008; Maher, 2010; Maher and Chamberlain, 2014; Dessert et al., 2003; Ibarra et al., 55 

2019; West et al., 2005). The dependence of silicate weathering rate on surface temperature and runoff is 

especially important because it makes the silicate weathering not only a driver of climate change but also 

a stabilizer of the climate (Walker et al., 1981; Berner et al., 1983). The negative feedback between 

silicate weathering and climate is thought to be a crucial mechanism for the Earth system to maintain the 

relative stability of both pCO2 and climate (Kump and Arthur, 1997; Kasting, 2019). This is another 60 

reason that we need to obtain accurate weathering flux so as to understand properly its power in 

stabilizing the climate. 

Seawater isotopes such as Sr, Os, Li, and Be, etc. are often used to estimate the global silicate 

weathering flux in the past (Caves Rugenstein et al., 2019; Dellinger et al., 2015; Kalderon-Asael et al., 

2021; Li et al., 2019). However, large uncertainties exist (Li et al., 2019; Dellinger et al., 2015) and it is 65 

difficult to constrain the sensitivity of silicate weathering to certain factors (e.g. temperature), especially 

in local regions, by such global estimate. Simulating the weathering reactions in the lab can provide 

useful information for the factors that control the weathering rate but lab conditions are generally much 

simpler than those in the natural field (Gruber et al., 2014; Calabrese et al., 2022; White and Brantley, 

2003). Many of the subsequent works focused on compiling the dissolved river loading to estimate the 70 

silicate weathering fluxes and rates at different regions for the present day (Bluth and Kump, 1994; Gibbs 

et al., 1999; Amiotte Suchet et al., 2003; Suchet and Probst, 2002). Despite the various uncertainties in 

these methods, they provide a basis for the development of numerical models.  
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Early zero-dimensional models (e.g. Walker et al., 1981; Berner et al., 1983; 1991), especially the 

GEOCARB (Geologic Carbon Cycle) family, provided an important understanding of the long-term 75 

carbon cycle. To consider spatial variations, two-dimensional numerical models have been developed 

subsequently. For example, the Gibbs and Kump Weathering Model (GKWM) in 1994 (Bluth and Kump, 

1994), the Global Erosion Model for CO2 fluxes (GEM-CO2) in 1995 (Suchet and Probst, 2002; Amiotte 

Suchet et al., 2003), and a model by Hartmann in 2009 (Hartmann et al., 2009; Hartmann and Moosdorf, 

2012; Hartmann et al., 2014). These models have been widely applied to modern, future, and 80 

paleoclimate scenarios to elucidate potential carbon-induced climate changes (Amiotte Suchet et al., 

2003; Gibbs et al., 1999; Zhang et al., 2021), in which the lithology and runoff were identified as the 

strongest predictors of chemical weathering rates. However, basin or catchment-scale compilation of 

weathering data (Gaillardet et al., 1999) indicates that the spatial variability of the weathering rate had 

to be explained through a combined effect of runoff, temperature, and erosion rate. West et al. (2005) 85 

further showed that there were two-end-member schemes of the weathering – transport-limited and 

kinetically-limited regimes (West et al., 2005).  

Built on West’s work, Gabet and Mudd (2009) constructed a theoretical model (referred to as GM09 

model hereafter) that encompassed the continuum of these two weathering regimes for the first time 

(Gabet and Mudd, 2009). This model is probably the most sophisticated one to date in terms of global 90 

silicate weathering calculation and has been used in many works subsequently for both the present day 

and the past (West, 2012; Goddéris et al., 2017; Maffre et al., 2018; Park et al., 2020). However, the 

model contains a few unknown parameters including cation abundance in the bedrock, dissolution rate 

constant and its dependence on runoff and reaction time, regolith production rate, of which only rough 

ranges are given. Most of the previous works (Maffre et al., 2018; Park et al., 2020) using this model 95 

estimated these parameters through some fitting approach with the help of catchment-scale observations 

(Gaillardet et al., 1999).  

The global total silicate weathering flux (Fw) of the present day given by Park et al. (2020) (referred 

to as Park20 hereafter) in terms of carbon is ~4.51012 mol/yr, which was thought to be consistent with 

the global outgassing rate estimated by (Gerlach, 2011). However, a few lines of evidence indicate that 100 

this flux may be overestimated. 1) the Fw estimated from the present-day observations is ~ 2.5×1012 

mol/yr (1.59 × 1012–2.75 × 1012 mol/yr) (Gaillardet et al., 1999; Moon et al., 2014); 2) the global 

outgassing rate was re-estimated to be ~2–3.3× 1012 mol/yr by Müller et al. (2022); 3) the silicate 

weathering fluxes for individual river basins within the tropical region from the Park 20 model were 

overall overestimated compared to the observations (Fig. 1b), which led to an overestimate of Fw (Fig. 105 

1c). This overestimation over the tropical region by the Park20 model has also been argued to exist based 

on the observed Os/Os (Caves Rugenstein et al., 2021).  

Overestimation of the carbon sink by 100% will lead to a dramatic decrease in pCO2 and extreme 

icehouse climate in a few million years when the outgassing is fixed (Berner and Caldeira, 1997; 

D'antonio et al., 2019) and thus should be dealt with properly. Probably more important reasons maybe 110 

1) the overestimation is not random among different sites but systematic; the weathering fluxes over 

tropical river basins are much more likely overestimated than underestimated, whether in the original 

values (Fig. 1b) or in the logarithmic values (Fig. 1e); 2) the climate sensitivity of the silicate weathering, 
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i.e., the ability of silicate weathering to stabilize climate, may be overestimated due to this systematic 

error. This latter point will be demonstrated explicitly in section 4.1 near the end of this paper. 115 

 

Figure 1 The difference between the model calculated and observed silicate weathering fluxes for 81 large 

rivers (more details can be found in section 2.2.e) over the world. The upper and lower panels show model-obs and 

log10(model)-log10(obs), respectively. The left, middle and right panels show rivers in the mid- to high latitudes (if 

more than half its river basin is located at or beyond 30° latitude), low latitudes (within 30° latitude) and over the 120 

whole globe, respectively. Calculated using the GM09 model but with model parameters in Park20. The global total 

weathering flux is 4.51012 mol/yr. A similar systematic upward bias in the tropical region appeared when the 

parameters as given in Maffre et al. (2022) were used (Fig. S1).  

The lower-than-expected silicate weathering rate over the tropical region has been noticed by 

Stallard as early as 1985 (Stallard and Edmond, 1981; Stallard, 1985; Stallard and Edmond, 1983). 125 

Hartmann et al. (2014) also found that considering only the effects of temperature and runoff would lead 

to a significant overestimation of weathering in the tropical region. They proposed the effect of soil 

shielding as a solution, that is, the occurrence of leached soil in equatorial regions hinders deeper 

weathering. They then assumed a global soil shielding effect in regions with leached soil and improved 

their model performance. However, the soil shielding effect has already been considered in the GM09 130 

model to some extent where the physical erosion was parameterized. Therefore, the problem remains in 

this model and our main goal in this paper is to find a simple fix to the problem and also show how it 

may affect the sensitivity of global silicate weathering to climate change. 

Specifically, we will first test whether the historical climate data constructed by different institutes 

have any significant impact on the calculated silicate weathering rate using the GM09 model in the 135 

tropical region. Then the influence of using monthly mean rather than annual mean data is tested, and the 

influence of the magnitude of seasonal cycle on physical weathering is tested next. It is then found 
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reducing physical erosion rates where leached soil is present works best in removing the systematic bias 

in the tropical region. In the end, we find a simple parameterization scheme related to vegetation that can 

attain a similar effect as that of leached soil but is much more applicable to weathering calculation for 140 

other periods of the Earth's history. 

The rest of the paper is organized as follows. In section 2, the GM09 model is briefly described, and 

the field observations used to validate the model and climate data used to calculate the weathering fluxes 

are also described. In section 3, the results of various sensitivity tests and the parameterization for 

vegetation effect are presented. The shortcomings as well as the consequences of the model revision are 145 

then discussed in section 4, and a summary is provided in section 5. 

2. Model and data 

2.1 Theoretical model for silicate weathering 

a) The weathering profile and weathering flux 

 150 

Figure 2 Schematic diagram of the theoretical model of bedrock weathering and the simultaneous 

production of soil/regolith based on GM09. In stage 1, the unweathered bedrock is moving vertically at a speed U 

due to tectonic movement, with weathering and erosion just to occur at the surface. In stage 2, soil is produced (Pr) 

at the surface of the bedrock and eroded (E) at the soil top, with silicate weathering occurring mostly within the soil. 

h represents the soil thickness, and ℎ̅ and ℎ̃ are the height of the soil and bedrock surface relative to the reference 155 

plane, respectively. The part enclosed by dashed lines is eroded away. All variables evolve with time at this stage. In 

stage 3, a steady state is reached under continuous weathering such that the soil thickness and the weathering flux 

do not change with time anymore. The weathered material within the soil is carried away by water runoff into the 

oceans, with the weathering flux denoted as W. 

For the convenience of the latter discussion, the model GM09 as presented in detail in Park20 and 160 

Maffre et al. (2022) is recapped here. The model includes an explicit simulation of a regolith layer, which 
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extends from the soil surface to the unweathered bedrock (Fig. 2). The layer can be millimeters to tens 

of meters thick depending on the environment, and is determined by 

𝑑ℎ

𝑑𝑡
=

𝑑ℎ̃

𝑑𝑡
+

𝑑ℎ̅

𝑑𝑡
= 𝑃𝑟 − 𝑈 + 𝑈 − 𝐸 = 𝑃𝑟 − 𝐸                                       ( 1 ) 

Where h is the regolith thickness, Pr is the soil production rate and E is the erosion rate. The weathering 165 

rate J at depth z is proportional to the concentration of cations (e.g. Ca2+ and Mg2+) denoted as x, and 

also depends on the temperature (T), runoff (q), and the exposure time () that the sample has experienced. 

The influence of T and q are generally considered using the Arrhenius equation and a linear or power-

law relation (White and Blum, 1995; Dessert et al., 2003), respectively. When a power-law dependence 

of weathering rate on runoff q is employed as in Park20, the weathering rate J is written as 170 

𝐽(𝑧) = 𝐾 ∙ (1 − 𝑒−𝑘𝑤∙𝑞) ∙ 𝑒
−

𝐸𝑎
𝑅

∙(
1

𝑇
−

1

𝑇0
)

∙ 𝜏𝜎 ∙ 𝑥(𝑧)                                   ( 2 ) 

where K is the dissolution constant, kw is the runoff sensitivity of dissolution rate, Ea is the apparent 

activation energy at T0 for dissolution, R is the gas constant, and  is an empirical constant.  

The concentration of cations itself changes with time according to,  

𝜕𝑥

𝜕𝑡
= 𝑈 ∙

𝜕𝑥

𝜕𝑧
− 𝐾 ∙ (1 − 𝑒−𝑘𝑤∙𝑞) ∙ 𝑒

−
𝐸𝑎
𝑅

∙(
1

𝑇
−

1

𝑇0
)

∙ 𝜏𝜎 ∙ 𝑥                                 ( 3 ) 175 

In most cases, we do not need to track the evolution of surface topography and it is as accurate, to 

calculate weathering flux, just set the reference plane to be at the regolith-bedrock interface. In that case, 

ℎ̃ ≡ 0 and ℎ̅ ≡ ℎ, and the uplifting speed in [3] can be replaced with Pr. The weathering profiles are 

often assumed to have reached a steady state, that is, the soil production rate equals to erosion rate 

(Phillips, 2010). Under such an assumption, the soil production rate does not change with time (as long 180 

as the tectonic setting and climate have not changed), and the exposure time  is simply z/Pr. Equation 

(3) then becomes  

𝜕𝑥

𝜕𝑡
= 𝑃𝑟 ∙

𝜕𝑥

𝜕𝑧
− 𝐾 ∙ (1 − 𝑒−𝑘𝑤∙𝑞) ∙ 𝑒

−
𝐸𝑎
𝑅

∙(
1

𝑇
−

1

𝑇0
)

∙ (
𝑧

𝑃𝑟
)𝜎 ∙ 𝑥                              ( 4 ) 

The total weathering flux at the grid point is just the integration of J(z) through the regolith,  

𝑊 = ∫ 𝐽(𝑧)𝑑𝑧
ℎ

0
= ∫ 𝐾 ∙ (1 − 𝑒−𝑘𝑤∙𝑞) ∙ 𝑒

−
𝐸𝑎
𝑅

∙(
1

𝑇
−

1

𝑇0
)

∙ (
𝑧

𝑃𝑟
)

𝜎

∙ 𝑥
ℎ

0
𝑑𝑧                     ( 5 ) 185 

There are still two undetermined variables in the formula above, namely h and Pr. The regolith thickness 

h can be calculated by assuming the balance between soil production rate Pr and the surface erosion rate 

E. Next, we will describe how Pr and E are parameterized. 

b) Soil production rate 

Soil production rate declines exponentially with increasing depth of the regolith (h) due to the 190 

decrease in water percolation or biogenic disturbance (Dietrich et al., 1995; Heimsath et al., 1997; 

Heimsath et al., 1999; Riebe et al., 2004; Heimsath et al., 2009; Heimsath and Korup, 2012; Burke et al., 

2007; Small et al., 1999). Some studies showed that this rate could also be controlled by temperature, 

water content, and so on (Heimsath et al., 1997; Heimsath et al., 2009; Dixon et al., 2009; Whipple et al., 
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2012; Carretier et al., 2014). However, it has also been suggested that there is an optimum regolith 195 

thickness, thinner or thicker than which the soil production rates both decrease (i.e., the 'humped' law) 

under certain environments (Anderson, 2002; Strudley et al., 2006). The parameterization scheme we 

choose to use here is the same as the one used in Park20. 

𝑃𝑟 = 𝑘𝑟𝑝 ∙ 𝑞 ∙ 𝑒
−

𝐸𝑎
𝑅

(
1

𝑇
−

1

𝑇0
)

∙ (𝑒
−

ℎ

𝑑0 − 𝑘1 ∙ 𝑒
−

ℎ

𝑑1)                                     ( 6 ) 

where krp is the regolith production constant to be determined by fitting the observations, 𝑑0 =2.73 m. 200 

k1 is set to 0 (nonzero in 'humped' law) here as in Park20. 

c) Erosion rate 

The current estimation of the erosion rate is mainly from the suspended river loads (Milliman and 

Farnsworth, 2011) or in situ cosmogenic nuclides in river sediments (Wittmann et al., 2011; Wittmann et 

al., 2015; Wittmann et al., 2020; Blanckenburg et al., 2012; Dannhaus et al., 2017; Larsen et al., 2014). 205 

Supported by observations, modeling studies of erosion rates at a global scale have flourished and several 

parameterization schemes are now available. For example, the model BQART, derived from a global 

database of 488 rivers, can estimate the erosion flux for the entire river basin with the knowledge of water 

discharge, drainage area, basin relief, average temperature, and anthropogenic influence (Syvitski and 

Milliman, 2007).  210 

The river incision at the catchment scale is simulated using the classical empirical law—the stream 

power incision law (Davy and Crave, 2000; Howard, 1994) which has been widely used (Adams et al., 

2020; Gasparini et al., 2007; Harel et al., 2016; Lague, 2014; Quye-Sawyer et al., 2020; Royden and 

Taylor Perron, 2013),  

𝐸 = 𝑘𝑒 ∙ 𝐵 ∙ 𝑞𝑚 ∙ 𝑠𝑛                                                                 (7) 215 

where 𝑘𝑒 is the erodibility constant which is calibrated by setting the global total physical denudation 

flux to be 20 Gt/yr and set to 0.0030713 m1-m/yr1-m in Park20, s is the surface slope. The exponents m 

and n are set to values 0.5 and 1, respectively. A new parameter B is introduced herein to match the 

observed individual erosional fluxes in some of the tests performed herein, as will be explained in detail 

in section 2.2.e. The BQART model is similar to Eq. (7) except that a temperature dependence is added 220 

(Syvitski and Milliman, 2007). This model was tested here but results will not be shown because no 

improvement was achieved compared to the stream law model above.  

Note that both the BQART and stream law models are not prepared for grid-scale erosion rate but 

catchment scale. More explicit ways of representing the denudation are available (e.g., Carretier et al., 

2018), which involve many detailed processes and hydrographic features. Such a method is not practical 225 

here since our purpose is to construct a model applicable to paleoclimate conditions for which limited 

information can be obtained.  

d) The final solution for the weathering flux 

The regolith thickness h in Eq. (5) can be calculated by equating the erosion rate E and soil 

production rate Pr, 230 

ℎ = 𝑃𝑟
−1(𝐸)                                                                       (8)  
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Since h, Pr and E are independent of z, the integration in Eq. (5) can be solved to get 

𝑊 = 𝐸 ∙ (𝑥|𝑧=0 − 𝑥|𝑧=0 ∙ 𝑒
−𝐾∙(1−𝑒−𝑘𝑤∙𝑞)∙𝑒

−
𝐸𝑎
𝑅 ∙(

1
𝑇−

1
𝑇0

)

𝜎+1
∙(

ℎ

𝐸
)

𝜎+1

)                                  (9) 

where 𝑥|𝑧=0 is the concentration of relevant cations in the fresh rock and is dependent on the lithology. 

The second term in the large brackets of Eq. (9) is actually the concentration of elements at the surface 235 

of the regolith layer (i.e., z=h), and will be represented by 𝑥𝑠 in what follows.  

Five parameters (Table S1) in this equation are unknown. Field measurements or laboratory 

experiments have provided reference ranges for some parameters (Rudnick and Gao, 2003; Heimsath et 

al., 1997; White and Brantley, 2003). Based on these reference ranges, previous studies estimated optimal 

values of these parameters by fitting the calculated weathering fluxes with the observed ones at various 240 

river catchments (Maffre et al., 2018; Maffre et al., 2022; Park et al., 2020). We will use this theoretical 

model as a foundation and try to improve the model-data comparison by adding possible missing 

processes. The parameters in Eq. (9) are re-estimated when necessary.  

2.2 Data 

a) Climate data for the present day 245 

The climate fields required in the model presented above are surface temperature and river runoff. 

To investigate the influence of these data on the comparison between the calculated and observed 

weathering fluxes, climate data from various sources are considered. The first one is the monthly 2 m 

temperature and runoff for 1950 to 2021 obtained from ERA5 (Muñoz Sabater, 2019), which is a re-

analysis dataset with a spatial resolution of 0.1°0.1°. Since Park20 has done elaborate work on testing 250 

parameters, we also used the temperature and runoff in their test. Their temperature was derived from 

CRU TS v.4.03 (Harris et al., 2014; denoted as T_CRU), while two runoff datasets were used, one was 

from UNH/GRDC Composite Runoff Fields V1.0 (Fekete et al., 2002; denoted as R_Park), the other was 

from Yves as described in the data file supplied along with the paper (denoted as R_Yves). However, 

because the R_Park data is different from the runoff that we downloaded from UNH/GRDC Composite 255 

Runoff Fields V1.0 (http://www.grdc.sr.unh.edu), this latter dataset was also tested and denoted as 

R_UNH herein. Other than these two datasets, an observation-based global gridded runoff dataset GRUN 

from 1902 to 2014 (Ghiggi et al., 2019) with a resolution of 0.5°0.5° was also used.  

To account for the influence of global warming and human activities, we conducted tests using 

temperature and runoff averaged over three different periods. For temperature, the three time periods are 260 

1950-1979, 1950-1997, and 1950-1921, denoted as T_ERA1, T_ERA2, and T_ERA3, respectively. For 

runoff, the three time periods are the same as those for the temperature for the ERA dataset, but are 1902-

1950, 1902-1996, and 1902-2014 for the GRUN dataset and denoted as R_GRUN1, R_GRUN2, and 

R_GRUN3, respectively. The distribution of temperature and runoff in different datasets and different 

time periods are shown in Fig. S2 and S3. To test the seasonal effect, we simply chose the monthly 265 

average temperature and runoff at the year 1981 from ERA5.  

b) Climate data for the last glacial maximum (LGM) and future 
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To estimate the sensitivity of global silicate weathering (i.e. Fw) to climate, data for both cold and 

warm climates are needed. For cold climates, the LGM was chosen and the data from Zhang et al. (2022a) 

were used. For the warm climate, the abrupt quadruple-CO2 experiment carried out using CESM2 270 

(Danabasoglu, 2019) was used and data were downloaded from the CMIP6 data website 

(https://pcmdi.llnl.gov/CMIP6/).  

c) Surface topography 

A key variable for calculating the erosion rate is the surface slope s. Global topography data from 

Scotese and Wright (2018) were used to calculate s, according to the formula (Maffre et al., 2018),  275 

𝑠 = √(
𝜕ℎ

𝜕𝑥
)2 + (

𝜕ℎ

𝜕𝑦
)2                                                                (10) 

The slope data from Park20 was also tested, whose topography field was from the Shuttle Radar 

Topography Mission (Farr et al., 2007). We denote the surface slope calculated from Scotese and Wright 

(2018) and from Park20 as s1 and s2, respectively (Fig. S4). 

d) Lithology 280 

The spatial distribution of lithologies was obtained from the Global Lithologic Map (GliM) 

(Hartmann and Moosdorf, 2012). The original dataset includes 16 types of rock and we grouped them 

into 6 categories, the same as done in Park20 (see their Fig. S1 and our Fig. S5). The concentrations of 

Ca and Mg cations in each type of rock can be estimated through the EarthChem library 

(www.earthchem.org/portal). In addition, rocks such as sedimentary and metamorphic rocks, whose 285 

characteristics are greatly dependent on protoliths. They may cause large uncertainty in the calculated 

silicate weathering flux, so Park20 treated the concentrations of these two types of rocks as fitting 

parameters in the model. This is also how it is done here. 

e) Catchment measurements of weathering and erosional fluxes  

For model validation, concentrations of cations such as Ca2+ and Mg2+ in the dissolved loading of 290 

river discharge from global catchments were collected from the literature. The weathering fluxes 

integrated over the corresponding river basins can be inferred from these catchment data. Cations in 

rivers have various origins such as atmospheric input, carbonate weathering, silicate weathering, and so 

on (Moon et al., 2014). Since almost only Ca2+ and Mg2+ from silicate weathering can be considered as 

a sink of atmospheric CO2 on geological timescale, the elements from different sources have to be 295 

distinguished. Two standard methods have been widely used to differentiate silicate and non-silicate 

chemical sources. The forward method often uses the pre-assigned compositions for each element, which 

essentially relies on the knowledge of bedrock and environmental characteristics of the study area 

(Meybeck, 1987; Edmond et al., 1995; Galy and France-Lanord, 1999). In general, this approach is more 

easily applicable to small watersheds or watersheds with monolithic lithology than to large and complex 300 

watersheds. The inverse method starts from a priori ranges of elemental concentration ratios and 

determines the best a posteriori ratios based on the mass balance equation. This approach is useful when 

complete information on chemical compositions within the watershed is not available, such as in some 

large catchments (Gaillardet et al., 1999; Moon et al., 2014).  
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Since the silicate weathering model is used mostly for the geological past, where detailed 305 

information on surface topography, climate, and lithology is not available, the spatial resolution of the 

model cannot be too high, usually around 0.5°0.5° or coarser. To ensure a comparable performance of 

the model for the past to present day, the spatial resolution used herein is 0.5°0.5°. At such coarse 

resolution, accurate identification of river routes is not possible and data compiled for relatively large 

river basins are more reliable for model validation. Two such datasets are available (Gaillardet et al., 310 

1999; Moon et al., 2014) and that complied by Gaillardet for the 51 large river basins are the focus of 

our analysis (Table S2 for values and Fig. S6a for the definition of basins). In Park20, the Brahmaputra 

watershed overlaps with the Ganges watershed, they thus removed the Brahmaputra watershed. They 

also removed the Don watershed in their parameter exploration. Here we employed the modern river 

direction files contained within the Community Earth System Model (CESM) to refine the geographical 315 

delineation of rives, ensuring that the Brahmaputra watershed was distinguished from the Ganges 

watershed. We also kept the Don watershed. As will be shown later, including the Brahmaputra and Don 

watersheds has little effect on the results. 

Park20 also incorporated data from HYBAM, which consists of 32 small watersheds in the Amazon 

region (Moquet et al., 2011; Moquet et al., 2016; Moquet et al., 2018). The average weathering flux from 320 

the HYBAM Amazon basin data is approximately 0.07 mol/m2/yr, while the average weathering flux 

from the Gaillardet data (1999) for the Amazon region is 0.02 mol/m2/yr. Due to this significant mismatch 

between the datasets, we used both the Gaillardet data and Gaillardet+HYBAM data to validate the model.  

The modeled erosion rates can also be validated to some extent by the observed suspended river 

loading, the so-called Total Suspended Sediment (TSS). Different from the dissolved cations in the water, 325 

a significant portion of the suspended loading may have been deposited before they reached the 

catchment. Therefore, the suspended loading measured at the catchment may not represent the erosion 

rate over the river basin well. Nevertheless, we collected the river loading measurements from four 

sources (1991; Table S3; Future Earth Coasts, 1995; Milliman and Farnsworth, 2011), and obtained the 

loading for each of the 51 large rivers mentioned above. Multiple measurements may be available at one 330 

river catchment; we prefer to choose the older value in order to minimize the influence of human 

activities.  

Mean denudation rates are also available from cosmogenic nuclide analysis in sediment, like in-situ 

cosmogenic 26Al and 10Be. In general, this represents a longer-term average erosion rate, typically on the 

scale of millions of years, unlike TSS which represents the erosion over a short time period (~years). As 335 

a result, the denudation rates obtained through cosmogenic nuclide analysis may exclude the 

anthropogenic influence. Wittmann et al. (2020) have compiled global denudation rates for >50 large 

rivers over a range of climatic and tectonic regimes in this way, but only 18 of the rivers overlap with 

our data. The final loading thus obtained is shown in Table S3. Fig. 3 shows that the model-calculated 

erosion rates (Eq. (7) with B = 1) deviate significantly from both TSS and isotope-derived erosion rates. 340 

Therefore, in some of the tests with the original Park20 model, the model-calculated erosion rates were 

scaled by tunning B such that the erosion of each basin was identical to the observed one. Note that in 

these tests, B is a constant within each basin, but the erosion rate at each grid point varies within the 

basin.  
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 345 

Figure 3 The comparison between the river basin erosional fluxes calculated using the Park20 model with 

observations is shown. Different colors represent the regions where the basins are located, and the sizes represent 

the area of the basins. In (a), the observed erosion rates are from TSS data (The last column in Table. S3) and the 

observed erosion rates in (b) are from cosmogenic nuclide analysis, from which data are available for only 19 rivers 

(The penultimate column in Table. S3). 350 

f) Vegetation 

The primary vegetation data used herein are the areal fraction of different vegetation types and their 

associated leaf area index (LAI) provided by NCAR (Fig. S6c-d), which are derived by integrating 

observed land information (Lawrence and Chase, 2007). To test the performance of simulated vegetation, 

we also downloaded the pre-industrial vegetation data simulated by the LPJ-GUESS dynamic vegetation 355 

model and the HadCM3 climate model (Allen et al., 2020). In the 4×CO2 experiment, the vegetation 

changed with climate and the data was downloaded from the CMIP6 homepage, while the vegetation 

was assumed to be the same as in the present day except where the land was covered by ice sheets in the 

LGM experiment by Zhang et al. (2022a). 

g) Leached soil 360 

The global soil distribution data are obtained from the Harmonized World Soil Database v1.2 

(Fischer et al., 2008), which is provided by the Food and Agriculture Organization of the United Nations. 

Following Hartmann et al. (2014), we selected 6 specific soil types as leached soil, including Ferralsols, 

Acrisols, Nitisols, Lixisols, Histosols, and Gleysols. Fig. S6b represents the proportion of leached soil 

within each grid cell, as determined according to the selected soil types. 365 

2.3 Evaluation of model performance 

The model-data discrepancy in silicate weathering flux is often measured by r2 (e.g. (Park et al., 

2020)).  

𝑟𝑙𝑜𝑔
2 = 1 −

∑(𝑙𝑜𝑔10(𝑀𝑖)−𝑙𝑜𝑔10(𝑂𝑖))2

∑(𝑙𝑜𝑔10(𝑂𝑖)−𝑙𝑜𝑔10(𝑂)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)2                                                      (11) 

where Mi and Oi are the model calculated and observed values, respectively, and the summation is over 370 

the index i. Since we are concerned with the global flux Fw and the weathering-climate sensitivity, Mi 

and Oi represent the catchment weathering flux for river i rather than the weathering flux per unit area of 

the ith river basin. In the equation above, a logarithmic operation is taken to the values first before 
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calculating the difference, a subscript ‘log’ is thus added to differentiate it from the r2 calculated using 

the original values directly, 375 

𝑟2 = 1 −
∑((𝑀𝑖)−(𝑂𝑖))2

∑((𝑂𝑖)−(𝑂)̅̅ ̅̅ ̅)2                                                                (12) 

Using 𝑟𝑙𝑜𝑔
2 has the advantage of giving relatively balanced weights to both the very small and very 

large values, which is important because the weathering fluxes over different river basins differ a lot 

(Table S2). Park20 obtained their model parameters in Eq. (9) by maximizing 𝑟𝑙𝑜𝑔
2. However, although 

there is a relatively small systematic bias in the logarithmic model-data errors (the data points distribute 380 

more symmetrically against the zero line in Fig. 1f), Fig. 1a-c shows that there is an obvious systematic 

bias in the direct model-data errors. For similar magnitude of the observational silicate weathering fluxes, 

the bias is much larger over the low-latitude (Fig. 1b) than over the high-latitude (Fig. 1a) regions. The 

bias in the direct errors in Fig. 1b will lead to an overestimation of the global weathering flux Fw (the 

global integral of W in Eq. (9)) as well as the weathering-climate sensitivity. Therefore, we argue that 385 

using the average or sum of 𝑟𝑙𝑜𝑔
2 and 𝑟2 is better than using either of them as the criteria of model 

validation. 

2.4 Experiments 

In the first set of experiments, the original model of Park20 is tested for the influence of climate data 

and erosion rates from different sources or the same source but in different time periods. As described 390 

above, the temperature data come from two sources: ERA5 and CRU, and the data from ERA5 is 

organized into three different time periods; the runoff data come from five sources: ERA5, GRUN, UNH 

from Park20, UNH updated herein, and Yves, where both the ERA5 and GRUN data are also organized 

into three different time periods; slope data come from two sources: Scotese and Wright, and Park20; the 

erosion rates are calculated in three different ways which all used Eq. (7) but the parameter B has different 395 

values: B=1, B tunned according to two observed basinal erosion rates. There are 4x9x2x3 = 216 

experiments in total, which are summarized in Table S4. Other than these, an additional experiment is 

carried out in which the weathering fluxes are calculated month by month to get the annual flux, rather 

than calculating the annual flux from the annual climate data directly. In this experiment, only the 

temperature and runoff from ERA5 at the year 1981, the slope of Scotese and Wright, and the erosion 400 

rate calculated with B=1 are considered. These experiments are summarized in Table S4. 

In the second set of experiments, we try to improve the Park20 model by considering the effect of 

additional processes. In each of these experiments, rather than adopting the values from Park20, all the 

unknown model parameters (Table S1) are optimized again. Based on the results of the first set of 

experiments, only T_CRU is used for temperature, R_Park, R_Yves, and R_GRUN2 are used for runoff. 405 

Both slope data of Scotese and Wright and Park20 are tested. We will first show that changing the 

validation criteria (to maximizing R2) is able to alleviate the systematic bias so that there is no overall 

overestimation, but the model-data discrepancy becomes even larger. In order to reduce this discrepancy, 

we try three different methods. The first method is to consider the influence of the seasonal cycle of 

temperature on soil production rate which will change the regolith thickness. The second and third 410 

methods consider the influence of leached soil and vegetation on erosion rates, respectively. All three 
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methods act to reduce the silicate weathering fluxes in the tropical region relative to those in the mid to 

high latitude. All of these experiments are summarized in Table 1 below. 

To consider the effect of vegetation, four different approaches have been tried, denoted by m1~4 in 

Table 1. 'm1' and 'm2' use the vegetation coverage and LAI of tropical rainforests (from NCAR), 415 

respectively. Because the vegetation effect reduces the global total erosional flux, in 'm3' and 'm4', the 

erosion rate at every grid point is scaled uniformly (B in Eq. (7)) so that the global total erosional flux is 

fixed to the observed value (20 Gt/yr in Park20). 'm3' and 'm4' differ in that only the LAI of tropical 

rainforests is used in the former, while the LAI of the global vegetation is used in the latter. The LAI 

simulated by the LPJ vegetation model is also tested.  420 
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Table 1. Summary of Main Experiments 

Experiment Runoff Temperature Slope 
Seasonal Temp 

variation effect 
Leached soil effect Vegetation effect* Max R2 Fw of Max R2 (1×1012mol/yr) 

R_Park_s2 R_Park T_CRU s2 × × × -0.148 2.229 

R_Park_s2_td R_Park T_CRU s2 √ × × -0.129 3.008 

R_Park_s2_soil R_Park T_CRU s2 × √ × 0.442 2.678 

R_Park_s2_plant R_Park T_CRU s2 × × m1 0.113 2.422 

R_Park_s2_LAI_new R_Park T_CRU s2 × × m2 0.0975 2.343 

R_Park_s2_LAI_Etotal R_Park T_CRU s2 × × m3 0.128 2.529 

R_Park_s2_LAI_global R_Park T_CRU s2 × × m4 0.284 2.872 

R_Yves_s2 R_Yves T_CRU s2 × × × 0.483 2.326 

R_Yves_s2_td R_Yves T_CRU s2 √ × × 0.511 2.776 

R_Yves_s2_soil R_Yves T_CRU s2 × √ × 0.926 2.293 

R_Yves_s2_plant R_Yves T_CRU s2 × × m1 0.775 2.651 

R_Yves_s2_LAI_new R_Yves T_CRU s2 × × m2 0.795 2.438 

R_Yves_s2_LAI_Etotal R_Yves T_CRU s2 × × m3 0.799 2.704 

R_Yves_s2_LAI_global R_Yves T_CRU s2 × × m4 0.842 2.807 

R_Yves_s1 R_Yves T_CRU s1 × × × 0.489 3.205 

R_Yves_s1_soil R_Yves T_CRU s1 × √ × 0.865 2.870 

R_Yves_s1_plant R_Yves T_CRU s1 × × m1 0.644 2.585 

R_Yves_s1_LAI_new R_Yves T_CRU s1 × × m2 0.623 2.739 

R_Yves_s1_LAI_Etotal R_Yves T_CRU s1 × × m3 0.651 2.578 

R_Yves_s1_LAI_global R_Yves T_CRU s1 × × m4 0.804 3.218 

R_GRUN2_s2 R_GRUN2 T_CRU s1 × × × 0.146 2.157 

R_GRUN2_s2_soil R_GRUN2 T_CRU s1 × √ × 0.706 2.423 

R_GRUN2_s2_plant R_GRUN2 T_CRU s1 × × m1 0.491 2.210 

R_GRUN2_s2_LAI_new R_GRUN2 T_CRU s1 × × m2 0.536 2.277 

R_GRUN2_s2_LAI_Etotal R_GRUN2 T_CRU s1 × × m3 0.542 2.286 

R_GRUN2_s2_LAI_global R_GRUN2 T_CRU s1 × × m4 0.571 2.423 

R_Yves_s2_LAI_old_global R_Yves T_CRU s2 × × m5 0.640 2.718 

Last Glacial Maximum √ √ √ × × m6   

4xCO2 case √ √ √ × × m7   

*m1: Tropical LAI from NCAR; m2: Tropical LAI from NCAR but fix global erosional flux; m3: Global LAI from 

NCAR but fix global erosional flux; m4: Tropical evergreen tree coverage from CESM (NCAR); m5: Global LAI 

from LPJ model but fix global erosional flux; m6: Global LAI of LGM and use the same B as in m3; m7: Global LAI 425 

of 4×CO2 case and use the same B as in m3. 

https://doi.org/10.5194/gmd-2023-199
Preprint. Discussion started: 24 November 2023
c© Author(s) 2023. CC BY 4.0 License.



 15 

3. Results 

We will first show whether the large weathering fluxes over tropical river basins of Park20 model 

were due to the uncertainty in climate data or error in the calculated erosion rates. Then, we will re-

estimate model parameters by balancing 𝑟𝑙𝑜𝑔
2 and 𝑟2, that is, by maximizing the sum of 𝑟𝑙𝑜𝑔

2 and 𝑟2 430 

(denoted as "R2" hereafter). After that, we propose and test a few different parameterizations to see 

whether they are effective in further decreasing the model-data discrepancy measured by R2 (Table 1). 

Without specific indication, all results described below are for the present day.  

 

Figure 4 The 𝑟2  (solid symbols) and 𝑟𝑙𝑜𝑔
2  (hollow symbols) calculated using different temperature, 435 

runoff, and slope data. In (a), all the observed catchment weathering fluxes in Park20 are used, while in (b) only the 

51 basins of Gailladet et al. (1999) are used to calculate 𝑟2 and 𝑟𝑙𝑜𝑔
2. The runoff datasets are denoted on the x-axis 

with their names can be found in Fig. S3. Circles and pentagrams denote results calculated using slope data s1 and 

s2, respectively. Blue, red, green and orange (the latter three with each other in most cases) means the temperature 

data T_CRU, T_ERA1, T_ERA2, and T_ERA3. (c, d) are similar to (a, b) except that here the temperature is fixed 440 

to T_CRU while colors mean different ways of revising the erosion rate: no change (blue), the scale erosion rate of 

each basin according to TSS data (orange) and cosmogenic nuclide analysis (green), respectively.  

3.1 Influence of climate forcing and erosion rate in the original Park20 model 

For this series of tests, everything is the same as the Park20 model except that the temperature, runoff 

and surface slope from different sources or different time periods are used. Results show that climate and 445 

slope data do have some impact on 𝑟𝑙𝑜𝑔
2 or 𝑟2, especially the latter (Fig. 4a, b). The runoff data has the 

largest impact, followed by slope, and the temperature data has the least impact, probably because the 
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uncertainties in temperature are small (Fig. S2). For runoff, the data from different centers give quite 

different 𝑟2  values, while the data from the same center but different periods have a small effect. 

Although 𝑟2 can vary from -0.5 to -4.47 in different cases, all of them are below zero (Fig. 4a, b), 450 

meaning large model-data discrepancy. For all cases, overestimation in the weathering fluxes over 

tropical river basins persists (not shown but largely the same as shown in Fig. 1b), and the total global 

weathering flux is similarly overestimated. Calculating the silicate weathering month by month rather 

than year by year reduces the fluxes over tropical regions but increases the fluxes over other regions (Fig. 

S7a). However, the changes are too small to make any qualitative improvement (Fig. S7a). 455 

Another factor that may be considered is the erosion rate, for which the model calculated values 

using Eq. (7) deviate from the observed values significantly (Fig. 3a). If the observed erosion rates are 

used, 𝑟2 is significantly improved, especially when the runoff datasets R_UNH and R_Park are used. 

The improvement is more significant when the erosion rates inferred from the cosmogenic nuclide 

analysis (Wittmann et al., 2020) are used. The tropical bias is also reduced but still quite obvious (Figs. 460 

5 and S8). Note that the results are improved even without tunning the empirical parameters in the Park20 

model. This test hints to us that the erosion rate may be a critical factor in alleviating the model bias. 

However, the erosion rates in either the past or the future are unknown and need to be parameterized if 

the model is to be applied to these time periods. Improving this parameterization is the major focus of 

our work herein and will be described in detail in what follows. 465 

  

Figure 5 The difference (model-obs) between the model calculated and observed silicate weathering fluxes 

for 81 large rivers (more details can be found in section 2.2.e) over the world for the T_CRU_R_Yves_s2_Be case 

(Table S4). The left, middle and right panels show rivers in the mid- to high latitudes (if more than half its river basin 

is located at or beyond 30° latitude), low latitudes (within 30° latitude) and over the whole globe, respectively. The 470 

global total weathering flux is 3.951012 mol/yr.  

3.2 Maximizing R2 – a new control model 

Other than the inaccuracy in the erosion rate (Fig. 3), the systematic bias in Park20 model (Fig. 1) 

may also be due to that the model parameters were searched by maximizing 𝑟𝑙𝑜𝑔
2 . Here we check 

whether the bias can be alleviated by minimizing R2. Specifically, five parameters are searched with their 475 

searching ranges given in Table 2. Because the computational load of the model is relatively small, the 

searching is done by a forward calculation for all the possible combinations. The total number of 

combinations is 240240, and a full search takes 72 hours on a desk computer and 1 hour when 72 cores 
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are used on a cluster. In the tests shown here, the slope data of Park20 (denoted as s1 in section 2.2.c) is 

replaced by that from Scotese topography (denoted as s2) which aligns more closely with observations 480 

(not shown). Tests were also done with s1 but the results are only shown in Table 1. Moreover, because 

of the relatively high sensitivity of model results to runoff (Fig. 4), the model parameters are searched 

for three runoff datasets: R_Yves, R_Park, and R_GRUN2. Both the former two were provided by Park20 

(see section 2.2.a). Only results for R_Yves and R_Park are presented below because the main conclusion 

is not very different from the use of runoff, and these two data can basically represent the main 485 

characteristics.  

When calculating 𝑟𝑙𝑜𝑔
2 and 𝑟2, two different sets of observed catchment weathering fluxes have 

been used, one with the HYBAM data and the other without (see section 2.2.e). The 𝑟𝑙𝑜𝑔
2, 𝑟2, and R2 

of all parameter combinations are shown in Fig. 6, where each dot represents the result of a specific 

combination of model parameters and only the ones with values greater than 0 are shown. Without 490 

HYBAM data, the maximum 𝑟𝑙𝑜𝑔
2 and 𝑟2 are -0.033 and 0.349, respectively, when R_Park is used 

(Fig. 6a), while with HYBAM data, they become 0.138 and 0.349, respectively. It can be seen that Fw 

tends to be overestimated if 𝑟𝑙𝑜𝑔
2 is to be maximized (Fw = 5.54×1012mol/yr at the peak of green dot 

group in Fig. 6b) while underestimated if 𝑟2 is to be maximized (Fw = 1.8×1012mol/yr at the peak of 

the red dot group in Fig. 6b). The R2 is small (<0) for all parameter combinations (blue dots in Fig. 6a-495 

b), meaning that no parameter combination can get relatively high 𝑟𝑙𝑜𝑔
2 and 𝑟2 at the same time. Using 

R_Yves improves 𝑟𝑙𝑜𝑔
2 significantly and thus R2; the maximum R2 value is 0.583 (Fig. 6d). It is notable 

that Fw is within the observational uncertainty range when R2 is maximized. The parameter combination 

associated with the maximum R2 is considered the new control model and R_Yves is used in all the tests 

to be presented in what follows.   500 

When R2 is maximized, either 𝑟𝑙𝑜𝑔
2 or 𝑟2 or both are too small (Fig. 6). This means that errors 

for individual basins have increased overall, although the signs of errors are more balanced (Fig. 7) than 

before so that the bias in Fw is small. However, inspection of the data points in Fig. 7 shows that the 

errors in the high-latitude region now have a negative bias compared to before (compare Fig. 7a and Fig. 

1a) while the positive bias in the tropical region is somewhat reduced but remains (Fig. 7b). This 505 

redistribution of biases is clearly unsatisfying, and it may suggest that there is a missing process that 

distinguishes the tropical and extratropical regions.  

Table 2. Model parameters and their values to be searched.  

K  

(unitless) 

kw 

(unitless) 

𝛴 

(unitless) 

krp 

(unitless) 

Concentration (mol/m3)** 

Metamorphic Sediment 

5×10-6* 1×10-3 -0.5 1.2×10-3 1500 500 

1×10-5 2×10-3 -0.4 2×10-3 2000 1000 

2×10-5 5×10-3 -0.2 3×10-3 2500 1500 

5×10-5 1×10-2 -0.1 4×10-3 3000 2000 

1×10-4 2×10-2 0 5×10-3 3500 2500 

2×10-4 5×10-2 0.1 6×10-3 4000 3000 

5×10-4 1×10-1 0.3 7×10-3   
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1×10-3 2×10-1  8×10-3   

2×10-3 5×10-1  9×10-3   

5×10-3 1  1×10-2   

1×10-2   1.5×10-2   

   5×10-2   

*The data marked in red are the additional values considered herein on top of those searched by Park20. The bold 

black values represent the optimal parameters selected by Park20.  510 

**Although the range of cation concentration of metamorphic rocks overlaps with the sedimentary rocks, it is 

constrained that the former must be larger than the latter during the search. 

 

Figure 6 The 𝑟𝑙𝑜𝑔
2  (green) and 𝑟2  (red) and their sums (blue) for all possible combinations of the 

parameters in Table 2. Only the cases with values greater than zero are shown. The R_Park and R_Yves runoff data 515 

are used in (a,b) and (c,d), respectively. The panels on the right are the same as those on the left except that the 

observations used include the HYBAM data. The black vertical line and grey zone show the observed global total 

weathering flux (i.e. Fw) and its uncertainty range.  
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Figure 7 The difference between the model calculated and observed silicate weathering fluxes for 520 

81 large rivers (more details can be found in section 2.2.e) over the world associated with the maximum 

R2 in Fig. 6d. The upper and lower panels show model-obs and log10(model)-log10(obs), respectively. 

The left, middle and right panels show rivers in the mid- to high latitudes (if more than half its river basin 

is located at or beyond 30° latitude), low latitudes (within 30° latitude) and over the whole globe, 

respectively. The global total weathering flux is 2.331012 mol/yr.  525 

3.3 Influence of temperature-modulated Soil Production Rate  

Large seasonal changes of temperature can induce fractures in rocks (Liu et al., 2020), which may 

enhance the soil production rate. Thus, the much weaker seasonal cycle in the tropical regions than in the 

higher latitudes (Fig. 6a) may be a factor to consider when calculating the weathering fluxes. To consider 

its influence, we assume that the soil production 𝑃𝑟  is dependent on the amplitude of seasonal cycle of 530 

surface temperature (defined as the difference between the maximum and minimum monthly temperature) 

and the constant krp in Eq. (6) is now, 

𝑘𝑟𝑝 = (
𝑒𝐴𝑇−𝑒−𝐴𝑇

𝑒𝐴𝑇+𝑒−𝐴𝑇
+ 𝑏) ∗ 𝑎                                                           (13) 

Where 𝐴𝑇 is the amplitude of seasonal cycle reduced by 24 K, which is roughly the amplitude at 

around 30° latitude (Fig. 8b). 𝐴𝑇 is further scaled by a factor c, 535 

𝐴𝑇 =
𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛−24

𝑐
 (𝐾)                                                             (14) 

Across the critical amplitude (i.e. 24 K), the soil production rate increases or decreases rapidly (Fig. 

8a). Note that we have subjectively chosen to use a logistic function in Equ [13], so as to make the soil 
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production rate in the tropical region much lower than that in the extra-tropical region (Fig. 8b). The 

values of a, b, and c determine the minimum values of krp and its variation with latitude (Fig. 8a). A total 540 

of 12 combinations of a, b, and c are tested (Table S5).  

The forward calculation is repeated to search the parameter combinations (Table 2) that maximize 

R2 for all combinations of a, b, and c. Results show that the best 𝑟𝑙𝑜𝑔
2 and 𝑟2 are obtained when a, b, 

and c are equal to 0.0244, 1.05, 8, respectively, when only considering the observation data from 

Gaillardet, and 0.015, 2.3, and 1, respectively, when including HYBAM data (Fig. 8c-d). Both 𝑟𝑙𝑜𝑔
2 and 545 

𝑟2  are improved in terms of the bias in Fw; compared to the new control model in section 3.2; Fw 

corresponding to the peaks of both 𝑟𝑙𝑜𝑔
2 and 𝑟2 are slightly closer to the observational value (compare 

Fig. 8c-d to Fig. 6c-d). In Fig. 8c-d, only the envelopes of all the data points (see Fig. 6c-d) are shown 

for the sake of clearness. However, the values of 𝑟𝑙𝑜𝑔
2 and 𝑟2 corresponding to the highest R2 are 

0.201 and 0.204 when the HYBAM data are not included, remaining to be small. When the HYBAM 550 

data are included for model evaluation, there is no significant difference between the results of this model 

and the new control model (compare Fig. 8d to Fig. 6d). Nevertheless, this model is superior to the new 

control model in that the biases in both the tropical and extra-tropical regions are reduced this time (not 

shown).  

 555 

Figure 8 Amplitude of seasonal cycle of surface temperature Tk and the variation of 𝑘𝑟𝑝 with 𝑇𝑘. (c) 

shows the 𝑟𝑙𝑜𝑔
2 (green) and 𝑟2 (red) and their sums (blue) of all possible combinations of the parameters with 

the effect of the seasonal cycle on soil production rate considered. (d) is the same as (c) except that the HYBAM 

data are included in the observations. The R_Yves runoff data is used in both (c) and (d). The black vertical line 

and grey zone show the observed Fw and its uncertainty range. 560 

3.4 Implication of leached soil 
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Equation (9) tells us that local weathering flux is essentially the product of the erosion rate and the 

difference in the concentration of Ca and Mg cations between the bottom and top of the regolith. In the 

tropical regions, the cation concentration at the surface calculated by the Park20 model is near 0, and is 

consistent with the distribution of leached soil (Figs. S6b and S9) defined in section 2.2.g. The 565 

overestimation of tropical weathering fluxes (Fig. 1b) thus may indicate that the erosion rate in these 

regions is slower than that calculated by the model (Eq. (7)). The cosmogenic nuclide analysis data does 

indicate lower erosion rates for the vast majority of rivers in the equatorial region than those from both 

TSS and the model calculation (Fig. 3b and Table S3). Fig. 4 also shows that the results of the original 

Park20 model would be improved significantly if the observed erosion rates are used. Therefore, we think 570 

it is reasonable to slow down the erosion rate calculated by Eq. (7) when the areal fraction of leached 

soil in a grid box at mid-low latitudes (<30°) is greater than 20% (chosen arbitrarily); the existence of 

such soil is an indication of slow erosion. Through a number of tests, it is found that the erosion rate by 

Eq. (7) should better be slowed down by an order of magnitude in these regions.  

 The model results are improved significantly with the simple fix to the erosion rates above. The 575 

highest value of R2 reaches 0.73 and 0.93, respectively, when the observed catchment weathering fluxes 

without and with the HYBAM data are used for validation (Fig. 9). Moreover, both 𝑟𝑙𝑜𝑔
2 and 𝑟2 have 

high values (~0.4) when R2 is at its maximum, higher than those obtained in section 3.1 (Fig. 4c-d) where 

the model parameters were not optimized. Furthermore, the tropical bias is visibly reduced (compare Fig. 

9 and Fig. 1b). These suggest that substantially slowing down the tropical erosion rates calculated by the 580 

Park20 model (Eq. (7)) is an advisable choice. However, the appearance of leached soils is obviously a 

manifestation not a reason for the lower erosion rates. In addition, the distribution of leached soil is not 

available for the past or the future, just like the observed erosion rates tested in section 3.1. Therefore, 

some other processes that are more fundamental and convenient than leached soil need to be found. 

https://doi.org/10.5194/gmd-2023-199
Preprint. Discussion started: 24 November 2023
c© Author(s) 2023. CC BY 4.0 License.



 22 

 585 

Figure 9 (a) and (b) show the 𝑟𝑙𝑜𝑔
2 (green) and 𝑟2 (red) and their sums (blue) of all possible combinations 

of the parameters with the effect of leached soil. Only the cases with values greater than zero are shown. The black 

vertical line and grey zone show the observed Fw and its uncertainty range. (c) is the same as Fig. 1a~c except here 

the results corresponding to the highest R2 in (b) are shown. 

3.5 Influence of Vegetation 590 

It is observed that the distribution of leached soil (Fig. S6b) coincides with the flourishment of 

tropical vegetation (Fig. S6c, d), and may very well be the result of the latter. Although observations from 

arid regions indicate that the presence of vegetation significantly enhances mechanical erosion due to 

rise in precipitation rates, mechanical erosion diminishes as vegetation cover increases in wet regions, 

owing to the dominant protective effects of vegetation (Mishra et al., 2019; Maffre et al., 2022). The 595 

presence of vegetation not only reduces the impact of raindrops on soil particles but also slows down the 

overland flow of water, decreasing the potential for soil detachment. Moreover, plant roots and organics 

contribute to soil cohesion and provide mechanical reinforcement (Mcmahon and Davies, 2018; Zeichner 

et al., 2021), thus reducing the overall likelihood of slope failures and landslides. Based on such thinking, 

we design two ways to modulate surface erosion with vegetation, one is the LAI (Fig. S6c), the other is 600 

the areal fraction of evergreen forests (FEF; Fig. S6d), 

𝐸 = 𝐸 ∗ (𝑒−𝐹𝐸𝐹×2)                                                                 (15) 

𝐸 = 𝐸 ∗ (𝑒− min(2,   𝐿𝐴𝐼))                                                             (16) 

When the vegetation from NCAR is considered, the results obtained by using Eq. (15) give a 

maximum R2 of 0.8, with the corresponding 𝑟𝑙𝑜𝑔
2  and 𝑟2  values approximately 0.5 and 0.3, 605 
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respectively. When Eq. (16) is used, but only the LAI of the tropical evergreen forests is taken into 

consideration, the maximum R2 is 0.9. Both of them (not shown) align with what was achieved by 

parameterizing the erosion rate using the leached soil as described in the section above. However, 

modifying the erosion rate in the equatorial region via Eq. (15) or (16) leads to a decline in the global 

total erosion fluxes which is approximately 20 Gt/yr (Section 2.1.c). Subsequently, we change ke (which 610 

has a uniform value everywhere) in Eq. (7) such that the global total erosional flux was not changed by 

the parameterization Eq. (15) or (16). Maximum R2 is slightly reduced by such scaling to a value of ~0.8 

(not shown). This means that changing the global total erosion is much less important to silicate 

weathering than changing the spatial distribution of erosion.  

In practice, it is difficult to obtain LAI for the tropical evergreen forests for the past; both 615 

reconstructions and model simulations rarely provide such data. Hence, we investigated the feasibility of 

utilizing global LAI, which also favors attenuating the erosion rate in tropical regions due to the high 

vegetation coverage there (Fig. S10). Utilizing global LAI is expected to make the effect of vegetation 

less distinguishable in the tropical region because of widespread relatively high LAI regions globally 

(Fig. S6c). The results turn out not so; the maximum R2 can still reach 0.9 (Fig. 10c, d) with the 620 

corresponding Fw being 2.7 ×1012 mol/yr. The basinal erosion rates calculated by the model also match 

those inferred from cosmogenic nuclide analysis better than when vegetation is not considered (Fig. 10a, 

b), substantiating the adjustment of erosion rate by vegetation. Based on these results, here we propose 

that the suppression of erosion rates by vegetation was likely underestimated in previous studies on 

silicate weathering.  625 

For the past or future, we will have to rely heavily on the model-simulated vegetation. However, 

the ability of current land models to simulate the vegetation and its response to climate change is still 

limited. Whether the effect of vegetation on silicate weathering can be properly considered is contingent 

upon how well the vegetation can be simulated. In one of the tests, the LAI simulated by the LPJ model 

(Fig. S11c, d) was used. The results were good when only the tropical LAI was used, but deteriorated 630 

substantially when the global LAI was used; the maximum R2 merely attains a value of 0.6. This means 

that the defects in vegetation data cannot be made up by tunning other parameters in the weathering 

model. Therefore, getting better vegetation data by either reconstruction or model simulation is important 

for properly simulating silicate weathering of the past or future.   
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 635 

Figure 10 (a) and (b) show the comparison between model erosion rates and observed erosion rates of 15 

basins in Wittmann (2020). The other four basins in Wittmann (2020) are not shown here (but can be seen from Fig. 

3b) solely because they will make the plots more crowded and harder to see. 𝑟2  and 𝑟𝑙𝑜𝑔
2  as well as linear 

correlation are calculated using all 19 data points and are shown within each panel. The influence of vegetation is 

considered in (b) but not in (a). Different colors represent the regions where the basins are located, and the sizes 640 

represent the area of the basins. (c) and (d) show the envelopes of 𝑟𝑙𝑜𝑔
2 (green) and 𝑟2 (red) and their sums (blue) 

of all possible combinations of the parameters. The effect of vegetation is considered by using the global LAI and 

the global total erosion rate is scaled to 20Gt/yr. Only the cases with values greater than zero are shown. The black 

vertical line and grey zone show the observed Fw and its uncertainty range. 

3.6 Final parameters  645 

A weathering model that adopts a parameterization for the effect of vegetation on erosion reduces 

the systematic error in the tropical region and is also easily applicable to other time periods. The Fw 

obtained by such a revised model is also closer to the most recently estimated global degassing flux 

(Müller et al., 2022) . In this section, the optimal parameter set (that gives the highest R2) is provided for 

different combinations of runoff and surface slope (Table 3). The top five parameter sets with the highest 650 

R2 values (ranked based on the average R2 from two sets of observational data, R2* and R2** in Table 3) 

for each case are provided in Table 3. As can be seen, the parameter set highlighted in bold in the Table 

3 is amongst the best-performing parameter sets no matter which runoff or slope data are used. The 

weathering fluxes calculated using this set of parameters are much improved compared to those 
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calculated using the original Park20 model, in terms of both individual river basins (Fig. S12) and the 655 

global total (Fig. 10c, d). Subsequent calculations in this study are all based on this set of parameters 

except otherwise stated. 

Table 3. Parameters chosen in the case of global LAI  

Experiment kd kw sigma krp metamorphic sediment R2* R2** 

R_Yves_s1 

2×10-5 1 -0.1 0.05 2000 1500 0.57 0.8 

5×10-5 1 -0.2 0.05 2000 1500 0.56 0.78 

1×10-5 1 0 0.015 2000 1500 0.55 0.78 

1×10-4 0.5 -0.2 0.05 2000 1500 0.53 0.79 

1×10-5 0.2 0.1 0.05 2000 1500 0.54 0.78 

GRUN2_s2 

5×10-5 1 -0.2 0.05 2000 1500 0.11 0.57 

2×10-5 1 -0.1 0.05 2000 1500 0.11 0.54 

1×10-5 1 0 0.05 1500 1000 0.13 0.51 

5×10-6 1 0 0.05 2000 1500 0.13 0.5 

2×10-5 1 -0.1 0.05 1500 1000 0.12 0.51 

R_Park_s2 

1×10-3 1 -0.5 0.05 2000 1500 0.09 0.28 

5×10-4 1 -0.4 0.05 1500 1000 0.09 0.22 

5×10-5 1 -0.2 0.05 2000 1500 0.11 0.19 

1×10-3 1 -0.5 0.05 2500 1500 0.03 0.25 

1×10-3 1 -0.5 0.015 2000 1500 0.06 0.21 

R_Yves__s2 

5×10-6 1 0 0.05 2000 1500 0.57 0.81 

5×10-5 1 -0.2 0.05 2000 1500 0.52 0.84 

2×10-5 1 -0.1 0.015 2000 1500 0.53 0.81 

2×10-5 1 -0.1 0.05 2000 1500 0.5 0.82 

1×10-5 0.5 0 0.05 2000 1500 0.52 0.81 

R_Yves_mn*** 

5×10-5 1 -0.2 0.05 1500 1000 0.38 0.69 

2×10-5 1 -0.1 0.05 1500 1000 0.39 0.68 

1×10-4 0.5 -0.2 0.05 1500 1000 0.35 0.7 

1×10-5 0.5 0 0.05 1500 1000 0.39 0.65 

5×10-5 0.1 0 0.05 1500 1000 0.36 0.66 

*represents the fitting metrics with the observation of Gaillardet. 

**represents the observation data including the HYBAM network. 660 

***Case that changes the erosion rate model by setting its sensitivity to the runoff to 0. 

4. Discussion 

4.1 Multiple effects of vegetation on silicate weathering 

From the results presented in previous sections, we think that the silicate weathering fluxes 

calculated by previous models such as Park20 were systematically overestimated over the tropical region, 665 

and the overestimation was due at least in part to the overestimated erosion rate in this region. One way 

to rectify this overestimation is to use the observed erosion rate for each river basin or the observed 

distribution of leached soil. However, such information would not be available for the past or future, 
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impairing its applicability. Moreover, the leached soil itself is the result not the cause of weaker erosion. 

We thus propose that the overestimation in erosion was likely due to the underestimated effect of tropical 670 

vegetation on reducing erosion. Our tests above show that this effect can be taken into account through 

a simple parameterization using LAI, which can be obtained more easily by either reconstruction or 

model simulations (Binney et al., 2017; Krapp et al., 2021; Prentice et al., 2000; Prentice and Webb Iii, 

1998; Shao et al., 2018; Wang et al., 2008; Woillez et al., 2011; Yao et al., 2009; Andermann et al., 2022) 

for different time periods. 675 

However, vegetation was generally thought to enhance silicate weathering by emitting organic acid 

(Caves Rugenstein et al., 2019; Berner, 2004; Berner, 1992), and the appearance of vegetation has been 

linked to the occurrence of a few ice ages in Earth's history (Lyla et al., 2011; Lenton et al., 2012). Here 

we are not arguing against such a mechanism and idea. Instead, we think the ability of vegetation in 

enhancing silicate weathering is universal and has been implicitly considered in model parameters such 680 

as the dissolution constant K in Eq. (2). In contrast, the effect of vegetation on soil protection could have 

been underestimated in silicate weathering models and could be geographically dependent. It is worth 

mentioning that Maffre et al. (2022) tested the effect of vegetation on slowing down soil erosion during 

the Devonian Era when vascular plants just landed. Their work was more of a sensitivity study in that 

the observations (e.g. pCO2) could not provide vigorous constraint as do the basinal weathering fluxes 685 

used here. 

4.2 Influence of runoff 

Some studies propose that the influence of runoff might have been overestimated in existing erosion 

rate frameworks. For instance, in a renowned model for erosion, BQART, sensitivity to runoff has been 

adjusted downward from 0.5 to 0.31 (Syvitski and Milliman, 2007). Consequently, we did a simple test 690 

by assuming no correlation between erosion rate and runoff. The maximum R2 value obtained under this 

assumption is approximately 0.718 (Fig. S11), achieving a smaller improvement compared to the 

vegetation parameterization above but a notable one compared to other methodologies. The optimal 

parameter sets obtained for this test are provided in Table 3. A not unreasonable conjecture is that 

removing the dependence of erosion on runoff implicitly takes into account part of the influence of 695 

vegetation, since vegetation and runoff generally exhibit a positive correlation under contemporary 

conditions (see Fig. S3 and S6(c)). Because the factors affecting vegetation include not just precipitation 

(highly related to runoff), but also temperature, sunlight and pCO2 etc., parameterizing erosion using 

vegetation is likely a superior way than using runoff. 

4.3 Sensitivity of global silicate weathering to climate change 700 

The climate data from the 4CO2 and LGM experiments (section 2.2.b) are used to test the sensitivity 

of global silicate weathering to climate change. The land surface temperature increases from 278.4 K in 

the LGM to 286.6 K in PI and further to 301.1 K in the 4CO2 experiment. Note that these changes are 

highly dependent on the climate model used but do not matter for the purpose here which is to 

demonstrate how the sensitivity of silicate weathering to climate changes between the Park20 model and 705 

the revised model in section 3.6.  

According to the Park20 model, the global silicate weathering flux Fw increases by 1.44 (46%) from 
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LGM to PI, and by 6.77(149%) from PI to 4CO2 situation (Table 4). For the revised model, Fw increases 

by 0.69(32%) from LGM to PI, and by 4.38(153%) from PI to 4CO2 situation. Thus, in terms of absolute 

values, the revised model is less sensitive to climate, but in terms of relative values, the revised model is 710 

very similar to the original model. Because the relative change of silicate weathering flux largely 

determines the relative change of pCO2 (see Eq. (2) of Godderis et al. (2023), which determines the 

climate change, the weathering-climate sensitivity of the revised model is similar to that of the original 

model. However, due to the fact that Fw as well as its variations (in terms of absolute values) in the 

revised model is much smaller than before, other processes such as the burial of organic carbon may have 715 

been more important in the Earth's carbon cycle than thought before. 

Note that although the LGM and 4CO2 climates are used above to demonstrate the weathering-

climate sensitivity, the timescales implied by these two experiments are only 10,000 years and 100 years, 

respectively. These timescales are too short to be appropriate for the weathering models here, which 

assume that the weathering has reached a steady state; when climate changes, vegetation may respond 720 

quickly (~100 years) but the regolith layer and thus the weathering takes a very long time to reach a new 

steady state. 

Table 4. Sensitivity of global silicate weathering to climate 

                      Climate Case 

Variable 

LGM PI Abrupt4xCO2 PI-LGM 4xCO2-PI 

Land surface temperature (K) 278.4 286.6 301.1 8.2 14.5 

Global Ca2++Mg2+
 

 

(1012 mol/yr) 

Park20 model 3.10 4.54 11.31 1.44(46%) 6.77(149%) 

Revised model 2.17 2.86 7.24 0.69(32%) 4.38(153%) 

 

4.4 Caveats and future directions 725 

The previously used measure for model-data discrepancy is 𝑟𝑙𝑜𝑔
2 , maximization of which 

essentially optimizes the ratio between the model and data. This measure has its advantages but as we 

have shown above, such a measure cannot prevent the occurrence of a systematic error in the absolute 

difference between the model and data (Fig. 1b). Optimizing 𝑟2, on the other hand, tend to underestimate 

Fw. We thus propose to optimize the sum of 𝑟𝑙𝑜𝑔
2  and 𝑟2  (i.e., R2) so that Fw is nearest to the 730 

observation. It turns out that simply maximizing R2, although largely removes the systematic bias, would 

give very low values for both 𝑟𝑙𝑜𝑔
2 and 𝑟2 (Fig. 7), meaning that changing the measure for model-data 

discrepancy alone is insufficient to improve the model. To resolve the problem, certain physical processes 

have to be rectified, for example, by invoking the influence of vegetation on erosion. A relatively 

satisfactory fit was finally obtained. However, R2 is still a subjective choice which may not be ideal. For 735 

example, R2 measures the overall degree of dispersion of the model-calculated fluxes around the 

observed fluxes, but it does not measure the correlation in spatial patterns. This may be one way to 
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improve the measure for model-data discrepancy in the future. 

Although it seems that a simple parameterization of reducing erosion rate by vegetation (Eq. (15) 

and (15)) works well in improving model-data comparison, it must be noted that this may not be the sole 740 

or best resolution. The influence of vegetation on erosion may also depend on the local environment 

which we have refrained from delving further, primarily due to the plethora of uncertainties and 

insufficient constraints. Future observational evidence will be required to offer support for better 

parameterization. Another process that may be considered is the horizontal transport and deposition of 

materials. The current model is a one-dimensional model in which the regolith/soil comes from the 745 

bottom only. While in reality, the soils can be eroded away easily and transported to another location, 

changing the local profile of cation concentration. 

5. Summary 

A silicate weathering model that explicitly considers the regolith profile based on the formulation of 

GM09 and Park20 is studied in detail. This model has more than five underdetermined parameters which 750 

need to be constrained by the observed weathering fluxes for multiple river basins or watersheds over 

the globe. In doing so, the model-data discrepancy was normally measured by 𝑟𝑙𝑜𝑔
2 (Eq. (11); larger 

values mean smaller discrepancy), and the parameter space was then searched to maximize 𝑟𝑙𝑜𝑔
2. This 

method stresses more on minimizing the relative error (or discrepancy) than the absolute error. We 

demonstrate that the parameters determined this way tend to systematically overestimate the weathering 755 

fluxes over the tropical region which leads to a significant overestimation of the global total flux Fw (Fig. 

1). In addition, we show that such a problem is not due to uncertainties in the climate and surface slope 

data. We thus propose to use R2 = 𝑟𝑙𝑜𝑔
2 + 𝑟2  as a new measure of model-data discrepancy, 

maximization of which reduces both the relative and absolute errors in a more balanced way. By 

searching for the optimal parameters using this new measure, globally unbiased weathering fluxes are 760 

indeed obtained (Figs. 6 and 7c). However, the bias is removed by increasing the bias over the 

extratropical region (Fig. 7a) rather than reducing the bias over the tropical region (Fig. 7b). Moreover, 

the model-data discrepancy is large; either 𝑟𝑙𝑜𝑔
2 or 𝑟2 is small. Therefore, some other processes must 

be considered to reduce the bias over the tropical region and reduce the model-data discrepancy.  

The influence of the seasonal cycle of temperature on soil production is tested first based on the 765 

consideration that a stronger seasonal cycle can fracture and shatter rocks more easily. Little 

improvement can be achieved by such consideration (Fig. 8 c, d). Next, the erosion rate is reduced in 

tropical regions where there are leached soils. It is found that the model-data discrepancy of silicate 

weathering fluxes is greatly reduced in this test (Fig. 9). Due to the fact that leached soil is the result not 

the cause of weakened erosion and the fact that the distribution of leached soil is almost coincident with 770 

that of evergreen forests, we propose that heavy vegetation is able to slow down erosion significantly. A 

simple parameterization is then put forward to consider the effect of vegetation on erosion by using the 

global LAI (Eq. (16)). LAI is used because it is relatively easy to be obtained for other periods of the 

Earth's history from Earth system model simulations. The Park20 model is revised to add this 

parameterization and the model parameters are re-optimized (Table 3). This revised model fits the 775 

observed weathering fluxes better than the original Park20 model (Fig. 10), and the modeled Fw is more 
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consistent with both the observation and the most recently constructed global outgassing.   

 The revised model simulates a much smaller Fw than the original Park20 model. Correspondingly, 

the changes of Fw also become smaller under the same climate changes (Table 4) although the relative 

changes of Fw remain similar to the original model. If the model revised model is reliable, it implies that 780 

the variations of other sinks of carbon such as organic carbon could have played a more important role 

than before. It will be interesting to see how the reconstruction of the Phanerozoic carbon cycle using 

models (e.g. Berner and Kothavala (2001)) will be impacted when the retarding effect of vegetation on 

silicate weathering as proposed herein is considered. 

 785 

Code and data availability 

The main code and data we collect can be found at the website (https://doi.org/10.5281/zenodo.8423769). 

The code presented here is the two types of experiments we described before, and all the data been used 

as input or verification are also in the same package.  

 790 

Author contributions 

YGL designed the work and HYZ developed the model, ran simulations and wrote the manuscript. All 

authors contributed to the analyses and editing of the manuscript. 

 

Competing interests 795 

The authors declare that they have no conflict of interest. 

 

Financial support 

This work is supported by the National Natural Science Foundation of China (Grant 41888101) and 

National Key Research and Development Program of China (Grant No. 2022YFF0800200). Z. Xu are 800 

supported by the National Key Research and Development 415 Program of China (Grant No. 

2020YFA0607700). 

Acknowledgements 

We are grateful to Wenjing Liu for providing us with guidance on the source of observational data and 

for revising the article.  805 

References 

Adams, B. A., Whipple, K. X., Forte, A. M., Heimsath, A. M., and Hodges, K. V.: Climate controls on 

erosion in tectonically active landscapes, Sci. Adv., 6, eaaz3166, doi:10.1126/sciadv.aaz3166, 2020. 

Allen, J., Forrest, M., Hickler, T., Singarayer, J., Valdes, P., and Huntley, B.: Global vegetation patterns 

of the past 140,000 years, J Biogeogr, 47, 10.1111/jbi.13930, 2020. 810 

Amiotte Suchet, P., Probst, J.-L., and Ludwig, W.: Worldwide distribution of continental rock lithology: 

Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river 

transport to the oceans, Global Biogeochem. Cy., 17, https://doi.org/10.1029/2002GB001891, 2003. 

Andermann, T., Strömberg, C. A. E., Antonelli, A., and Silvestro, D.: The origin and evolution of open 

habitats in North America inferred by Bayesian deep learning models, Nat. Commun., 13, 4833, 815 

https://doi.org/10.5194/gmd-2023-199
Preprint. Discussion started: 24 November 2023
c© Author(s) 2023. CC BY 4.0 License.



 30 

10.1038/s41467-022-32300-5, 2022. 

Anderson, R.: Modeling the tor-dotted crests, bedrock edges, and parabolic profiles of high alpine 

surfaces of the Wind River Range, Wyoming, Geomorphology, 46, 35-58, 10.1016/S0169-

555X(02)00053-3, 2002. 

Berner, R.: The Phanerozoic Carbon Cycle: CO2 and O2CO2 and O2, 820 

10.1093/oso/9780195173338.001.0001, 2004. 

Berner, R., Lasaga, A., and Garrells, R.: The carbonate-silicate geochemical cycle and its effect on 

atmospheric carbon dioxide over the past 100 million years, Am. J. Sci, 283, 10.2475/ajs.283.7.641, 

1983. 

Berner, R. A.: A model for atmospheric CO2 over Phanerozoic time, Am. J. Sci, 291, 339, 825 

10.2475/ajs.291.4.339, 1991. 

Berner, R. A.: Weathering, plants, and the long-term carbon cycle, Geochim. Cosmochim. Ac., 56, 

3225-3231, https://doi.org/10.1016/0016-7037(92)90300-8, 1992. 

Berner, R. A. and Caldeira, K.: The need for mass balance and feedback in the geochemical carbon 

cycle, Geology, 25, 955-956, 10.1130/0091-7613(1997)025<0955:TNFMBA>2.3.CO;2, 1997. 830 

Berner, R. A. and Kothavala, Z.: GEOCARB III: A revised model of atmospheric CO2 over 

phanerozoic time, Am. J. Sci, 301, 182-204, https://doi.org/10.2475/ajs.301.2.182, 2001. 

Binney, H., Edwards, M., Macias-Fauria, M., Lozhkin, A., Anderson, P., Kaplan, J. O., Andreev, A., 

Bezrukova, E., Blyakharchuk, T., Jankovska, V., Khazina, I., Krivonogov, S., Kremenetski, K., Nield, 

J., Novenko, E., Ryabogina, N., Solovieva, N., Willis, K., and Zernitskaya, V.: Vegetation of Eurasia 835 

from the last glacial maximum to present: Key biogeographic patterns, Quaternary Sci. Rev., 157, 80-

97, https://doi.org/10.1016/j.quascirev.2016.11.022, 2017. 

Blanckenburg, F., Bouchez, J., and Wittmann, H.: Earth surface erosion and weathering from the 10Be 

(meteoric)/9Be ratio, Earth Planet. Sc. Lett., s 351–352, 295–305, 10.1016/j.epsl.2012.07.022, 2012. 

Bluth, G. and Kump, L.: Lithologic and Climatologic Controls of River Chemistry, Geochim. 840 

Cosmochim. Ac., 58, 2341-2359, 10.1016/0016-7037(94)90015-9, 1994. 

Brantley, S. L., Bandstra, J., Moore, J., and White, A. F.: Modelling chemical depletion profiles in 

regolith, Geoderma, 145, 494-504, 10.1016/j.geoderma.2008.02.010, 2008. 

Burke, B., Heimsath, A., and White, A.: Coupling chemical weathering with soil production across 

soil‐mantled landscapes, Earth Surf. Proc. Land., 32, 853-873, 10.1002/esp.1443, 2007. 845 

Calabrese, S., Wild, B., Bertagni, M. B., Bourg, I. C., White, C., Aburto, F., Cipolla, G., Noto, L. V., 

and Porporato, A.: Nano- to Global-Scale Uncertainties in Terrestrial Enhanced Weathering, Environ. 

Sci. Technol., 56, 15261-15272, 10.1021/acs.est.2c03163, 2022. 

Canadell, J. G., P.M.S. Monteiro, M.H. Costa, L. Cotrim da Cunha, P.M. Cox, A.V. Eliseev, S. Henson, 

M. Ishii, S. Jaccard, C. Koven, A. Lohila, P.K. Patra, S. Piao, J. Rogelj, S. Syampungani, S. Zaehle, and 850 

K. Zickfeld: Global Carbon and Other Biogeochemical Cycles and Feedbacks, in: Climate Change 

2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of 

the Intergovernmental Panel on Climate Change, edited by: Intergovernmental Panel on Climate, C., 

Cambridge University Press, Cambridge, 673-816, DOI: 10.1017/9781009157896.007, 2023. 

Carretier, S., Goddéris, Y., Delannoy, T., and Rouby, D.: Mean bedrock-to-saprolite conversion and 855 

erosion rates during mountain growth and decline, Geomorphology, 209, 39-52, 

10.1016/j.geomorph.2013.11.025, 2014. 

Carretier, S., Godderis, Y., Martinez, J., Reich, M., and Martinod, P.: Colluvial deposits as a possible 

weathering reservoir in uplifting mountains, Earth Surf. Dynam., 6, 217-237, 10.5194/esurf-6-217-

https://doi.org/10.5194/gmd-2023-199
Preprint. Discussion started: 24 November 2023
c© Author(s) 2023. CC BY 4.0 License.



 31 

2018, 2018. 860 

Caves Rugenstein, J., Ibarra, D., Zhang, S., Planavsky, N., and Blanckenburg, F.: Isotope mass-balance 

constraints preclude that mafic weathering drove Neogene cooling, P. Natl. Acad. Sci. USA, 118, 

e2026345118, 10.1073/pnas.2026345118, 2021. 

Caves Rugenstein, J. K., Ibarra, D. E., and von Blanckenburg, F.: Neogene cooling driven by land 

surface reactivity rather than increased weathering fluxes, Nature, 571, 99-102, 10.1038/s41586-019-865 

1332-y, 2019. 

D'Antonio, M., Ibarra, D., and Boyce, C.: Land plant evolution decreased, rather than increased, 

weathering rates, Geology, 48, 10.1130/G46776.1, 2019. 

Danabasoglu, G.: NCAR CESM2 model output prepared for CMIP6 CMIP [dataset], 

10.22033/ESGF/CMIP6.2185, 2019. 870 

Dannhaus, N., Wittmann, H., Krám, P., Christl, M., and Blanckenburg, F.: Catchment-wide weathering 

and erosion rates of mafic, ultramafic, and granitic rock from cosmogenic meteoric 10 Be/ 9 Be ratios, 

Geochim. Cosmochim. Ac., 222, 10.1016/j.gca.2017.11.005, 2017. 

Davy, P. and Crave, A.: Upscaling Local-Scale Transport Processes in Large-Scale Relief Dynamics, 

Phys. Chem. Earth., 25, 533-541, 10.1016/S1464-1895(00)00082-X, 2000. 875 

Dellinger, M., Gaillardet, J., Bouchez, J., Calmels, D., Louvat, P., Dosseto, A., Gorge, C., Alanoca, L., 

and Maurice, L.: Riverine Li isotope fractionation in the Amazon River basin controlled by the 

weathering regimes, Geochim. Cosmochim. Ac., 164, 71-93, 10.1016/j.gca.2015.04.042, 2015. 

Dessert, C., Dupré, B., Gaillardet, J., François, L. M., and Allègre, C. J.: Basalt weathering laws and 

the impact of basalt weathering on the global carbon cycle, Chem. Geol., 202, 257-273, 880 

10.1016/j.chemgeo.2002.10.001, 2003. 

Dietrich, W., Reiss, R., Hsu, M.-L., and Montgomery, D.: A Process-Based Model for Colluvial Soil 

Depth and Shallow Landsliding Using Digital Elevation Data, Hydrol. Process., 9, 383-400, 

10.1002/hyp.3360090311, 1995. 

Dixon, J., Heimsath, A., and Amundson, R.: Critical role of climate and saprolite weathering in 885 

landscape evolution, Earth Surf. Proc. Land., 34, 1507-1521, 10.1002/esp.1836, 2009. 

Edmond, J. M., Palmer, M. R., Measures, C. I., Grant, B., and Stallard, R. F.: The fluvial geochemistry 

and denudation rate of the Guayana Shield in Venezuela, Colombia, and Brazil, Geochim. Cosmochim. 

Ac., 59, 3301-3325, https://doi.org/10.1016/0016-7037(95)00128-M, 1995. 

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., 890 

Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, 

D., and Alsdorf, D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45, 

https://doi.org/10.1029/2005RG000183, 2007. 

Fekete, B., Vörösmarty, C. J., and Grabs, W.: Highresolution fields of global runoff combining river 

discharge and simulated water balances, Global Biogeochem. Cy., 16, 2002. 895 

Fischer, G., Nachtergaele, F., Prieler, S., van Velthuizen, H. T., Verelst, L., and Wiberg, D.: Global 

Agro-ecological Zones Assessment for Agriculture (GAEZ 2008) [dataset], 2008. 

Future Earth Coasts, I. P. O.: R&S 2. River Discharge to the Sea A Global River Index (GLORI), 

10.13140/RG.2.1.2119.8565, 1995. 

Gabet, E. J. and Mudd, S. M.: A theoretical model coupling chemical weathering rates with denudation 900 

rates, Geology, 37, 151-154, 10.1130/G25270A.1, 2009. 

Gaillardet, J., Dupré, B., Louvat, P., and Allègre, C. J.: Global silicate weathering and CO2 

consumption rates deduced from the chemistry of large rivers, Chem. Geol., 159, 3-30, 10.1016/S0009-

https://doi.org/10.5194/gmd-2023-199
Preprint. Discussion started: 24 November 2023
c© Author(s) 2023. CC BY 4.0 License.



 32 

2541(99)00031-5, 1999. 

Galy, A. and France-Lanord, C.: Weathering processes in the Ganges–Brahmaputra basin and the 905 

riverine alkalinity budget, Chem. Geol., 159, 31-60, https://doi.org/10.1016/S0009-2541(99)00033-9, 

1999. 

Gasparini, N., Whipple, K., and Bras, R.: Predictions of steady state and transient landscape 

morphology using sediment-flux-dependent river incision models, J. Geophys. Res., 112, 

10.1029/2006JF000567, 2007. 910 

Gerlach, T.: Volcanic versus anthropogenic carbon dioxide, Eos Trans. Agu, 92, 

10.1029/2011EO240001, 2011. 

Ghiggi, G., Humphrey, V., Seneviratne, S. I., and Gudmundsson, L.: GRUN: an observation-based 

global gridded runoff dataset from 1902 to 2014, Earth Sys. Sci. Data, 11, 1655-1674, 10.5194/essd-11-

1655-2019, 2019. 915 

Gibbs, M., Bluth, G., Fawcett, P., and Kump, L.: Global chemical erosion over the last 250 MY: 

Variations due to changes in paleogeography, paleoclimate, and paleogeology, Am. J. Sci, 299, 611-

651, 10.2475/ajs.299.7-9.611, 1999. 

Goddéris, Y., Donnadieu, Y., and Mills, B. J. W.: What Models Tell Us About the Evolution of Carbon 

Sources and Sinks over the Phanerozoic, Annu. Rev. Earth Pl. Sc., 51, 471-492, 10.1146/annurev-earth-920 

032320-092701, 2023. 

Goddéris, Y., Donnadieu, Y., Carretier, S., Aretz, M., Dera, G., Macouin, M., and Regard, V.: Onset and 

ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering, Nat. Geosci., 10, 

382-386, 10.1038/ngeo2931, 2017. 

Gruber, C., Zhu, C., Georg, R. B., Zakon, Y., and Ganor, J.: Resolving the gap between laboratory and 925 

field rates of feldspar weathering, Geochim. Cosmochim. Ac., 147, 90-106, 

https://doi.org/10.1016/j.gca.2014.10.013, 2014. 

Harel, M. A., Mudd, S. M., and Attal, M.: Global analysis of the stream power law parameters based on 

worldwide 10Be denudation rates, Geomorphology, 268, 184-196, 

https://doi.org/10.1016/j.geomorph.2016.05.035, 2016. 930 

Harris, I., Jones, P., Osborn, T., and Lister, D.: Updated high-resolution grids of monthly climatic 

observations—The CRU TS3.10 Dataset, Int. J. Climatol., 34, n/a-n/a, 10.1002/joc.3711, 2014. 

Hartmann, J. and Moosdorf, N.: The new global lithological map database GLiM: A representation of 

rock properties at the Earth surface, Geochem. Geophy. Geosy., 13, 10.1029/2012gc004370, 2012. 

Hartmann, J., Jansen, N., Dürr, H. H., Kempe, S., and Köhler, P.: Global CO2-consumption by 935 

chemical weathering: What is the contribution of highly active weathering regions?, Global Planet. 

Change, 69, 185-194, 10.1016/j.gloplacha.2009.07.007, 2009. 

Hartmann, J., Moosdorf, N., Lauerwald, R., Hinderer, M., and West, A. J.: Global chemical weathering 

and associated P-release - The role of lithology, temperature and soil properties, Chem. Geol., 363, 

145-163, 10.1016/j.chemgeo.2013.10.025, 2014. 940 

Heimsath, A. and Korup, O.: Quantifying rates and processes of landscape evolution, Earth Surf. Proc. 

Land., 37, 249–251, 10.1002/esp.2251, 2012. 

Heimsath, A., Fink, D., and Hancock, G.: The ‘humped’ soil production function: Eroding Arnhem 

Land, Australia, Earth Surf. Proc. Land., 34, 1674-1684, 10.1002/esp.1859, 2009. 

Heimsath, A., Dietrich, W., Nishiizumi, K., and Finkel, R.: Cosmogenic nuclides, topography, and the 945 

spatial variation of soil depth, Geomorphology, 27, 151-172, 10.1016/S0169-555X(98)00095-6, 1999. 

Heimsath, A. M., Dietrich, W. E., Nishiizumi, K., and Finkel, R. C.: The soil production function and 

https://doi.org/10.5194/gmd-2023-199
Preprint. Discussion started: 24 November 2023
c© Author(s) 2023. CC BY 4.0 License.



 33 

landscape equilibrium, Nature, 388, 358-361, 10.1038/41056, 1997. 

Hilton, R. G. and West, A. J.: Mountains, erosion and the carbon cycle, Nat. Rev. Earth Env., 1, 284-

299, 10.1038/s43017-020-0058-6, 2020. 950 

Howard, A.: A Detachment-Limited Model of Drainage-Basin Evolution, Water Resour. Res., 30, 

10.1029/94WR00757, 1994. 

Ibarra, D. E., Rugenstein, J. K. C., Bachan, A., Baresch, A., Lau, K. V., Thomas, D. L., Lee, J.-E., 

Boyce, C. K., and Chamberlain, C. P.: Modeling the consequences of land plant evolution on silicate 

weathering, Am. J. Sci, 319, 1-43, 10.2475/01.2019.01, 2019. 955 

Kalderon-Asael, B., Katchinoff, J., Planavsky, N., Hood, A., Dellinger, M., Bellefroid, E., Jones, D., 

Hofmann, A., Ossa, F., Macdonald, F., Wang, C., Isson, T., Murphy, J., Higgins, J., West, A. J., Wallace, 

M., Asael, D., and Pogge von Strandmann, P.: A lithium-isotope perspective on the evolution of carbon 

and silicon cycles, Nature, 595, 394-398, 10.1038/s41586-021-03612-1, 2021. 

Kasting, J. F.: The Goldilocks Planet? How Silicate Weathering Maintains Earth “Just Right”, 960 

Elements, 15, 235-240, 10.2138/gselements.15.4.235, 2019. 

Krapp, M., Beyer, R. M., Edmundson, S. L., Valdes, P. J., and Manica, A.: A statistics-based 

reconstruction of high-resolution global terrestrial climate for the last 800,000 years, Sci. Data, 8, 228, 

10.1038/s41597-021-01009-3, 2021. 

Kump, L. R. and Arthur, M. A.: Global Chemical Erosion during the Cenozoic: Weatherability 965 

Balances the Budgets, in: Tectonic Uplift and Climate Change, edited by: Ruddiman, W. F., Springer 

US, Boston, MA, 399-426, 10.1007/978-1-4615-5935-1_18, 1997. 

Lague, D.: The stream power river incision model: evidence, theory and beyond, Earth Surf. Proc. 

Land., 39, 38-61, https://doi.org/10.1002/esp.3462, 2014. 

Larsen, I. J., Almond, P. C., Eger, A., Stone, J. O., Montgomery, D. R., and Malcolm, B.: Rapid Soil 970 

Production and Weathering in the Southern Alps, New Zealand, Science, 343, 637-640, 

10.1126/science.1244908, 2014. 

Lawrence, P. and Chase, T.: Representing a new MODIS consistent land surface in the Community 

Land Model (CLM 3.0), J. Geophys. Res., 112, 10.1029/2006JG000168, 2007. 

Lee, C.-T. A., Jiang, H., Dasgupta, R., and Torres, M.: A Framework for Understanding Whole-Earth 975 

Carbon Cycling, in: Deep Carbon, 313-357, 10.1017/9781108677950.011, 2019. 

Lenton, T. M., Crouch, M., Johnson, M., Pires, N., and Dolan, L.: First plants cooled the Ordovician, 

Nat. Geosci., 5, 86-89, 10.1038/ngeo1390, 2012. 

Li, S., Li, W., Beard, B. L., Raymo, M. E., Wang, X., Chen, Y., and Chen, J.: K isotopes as a tracer for 

continental weathering and geological K cycling, P. Natl. Acad. Sci. USA, 116, 8740-8745, 980 

doi:10.1073/pnas.1811282116, 2019. 

Li, X., Hu, Y., Yang, J., Wei, M., Guo, J., Lan, J., Lin, Q., Yuan, S., Zhang, J., Wei, Q., Liu, Y., Nie, J., 

Xia, Y., and Hu, S.: Climate Variations in the Past 250 Million Years and Contributing Factors, 

Paleoceanogr. Paleoclimatol., 38, 10.1029/2022pa004503, 2023. 

Liu, Y., Yang, J., Bao, H., Shen, B., and Hu, Y.: Large equatorial seasonal cycle during Marinoan 985 

snowball Earth, Sci. Adv., 6, eaay2471, 10.1126/sciadv.aay2471, 2020. 

Lyla, T., Steve, B., Jonathan, L., and David, J. B.: Modeling the evolutionary rise of ectomycorrhiza on 

sub-surface weathering environments and the geochemical carbon cycle, Am. J. Sci, 311, 369, 

10.2475/05.2011.01, 2011. 

Maffre, P., Godderis, Y., Pohl, A., Donnadieu, Y., Carretier, S., and Hir, G.: The complex response of 990 

continental silicate rock weathering to the colonization of the continents by vascular plants in the 

https://doi.org/10.5194/gmd-2023-199
Preprint. Discussion started: 24 November 2023
c© Author(s) 2023. CC BY 4.0 License.



 34 

Devonian, Am. J. Sci, 322, 461-492, 10.2475/03.2022.02, 2022. 

Maffre, P., Ladant, J.-B., Moquet, J.-S., Carretier, S., Labat, D., and Goddéris, Y.: Mountain ranges, 

climate and weathering. Do orogens strengthen or weaken the silicate weathering carbon sink?, Earth 

Planet. Sc. Lett., 493, 174-185, 10.1016/j.epsl.2018.04.034, 2018. 995 

Maher, K.: The dependence of chemical weathering rates on fluid residence time, Earth Planet. Sc. 

Lett., 294, 101-110, 10.1016/j.epsl.2010.03.010, 2010. 

Maher, K. and Chamberlain, C. P.: Hydrologic regulation of chemical weathering and the geologic, 

Science, 343, 1502-1504, 10.1126/science.1250770, 2014. 

McMahon, W. J. and Davies, N. S.: Evolution of alluvial mudrock forced by early land plants, Science, 1000 

359, 1022-1024, doi:10.1126/science.aan4660, 2018. 

Meybeck, M.: Global Chemical Weathering of Surficial Rocks Estimated From River Dissolved Loads, 

Am. J. Sci, 287, 401-428, 10.2475/ajs.287.5.401, 1987. 

Milliman, J. and Farnsworth, K.: River Discharge to the Coastal Ocean – A Global Synthesis, 

10.1017/CBO9780511781247, 2011. 1005 

Milliman, J. and Syvitski, J.: Geomorphic Tectonic Control of Sediment Discharge to Ocean – The 

Importance of Small Mountainous Rivers, J. Geol., 100, 525-544, 10.1086/629606, 1991. 

Mills, B. J. W., Donnadieu, Y., and Goddéris, Y.: Spatial continuous integration of Phanerozoic global 

biogeochemistry and climate, Gondwana Research, 100, 73-86, 

https://doi.org/10.1016/j.gr.2021.02.011, 2021. 1010 

Mishra, A., Placzek, C., and Jones, R.: Coupled influence of precipitation and vegetation on millennial-

scale erosion rates derived from 10Be, PLOS ONE, 14, e0211325, 10.1371/journal.pone.0211325, 

2019. 

Moon, S., Chamberlain, C. P., and Hilley, G. E.: New estimates of silicate weathering rates and their 

uncertainties in global rivers, Geochim. Cosmochim. Ac., 134, 257-274, 10.1016/j.gca.2014.02.033, 1015 

2014. 

Moquet, J.-S., Guyot, J.-L., Morera, S., Crave, A., Rau, P., Vauchel, P., Lagane, C., Sondag, F., Lavado, 

W., Pombosa, R., and Martinez, J.: Temporal variability and annual budget of inorganic dissolved 

matter in Andean Pacific Rivers located along a climate gradient from northern Ecuador to southern 

Peru, Cr. Geosci., 10.1016/j.crte.2017.11.002, 2018. 1020 

Moquet, J.-S., Guyot, J.-L., Crave, A., Viers, J., Filizola Jr, N., Martinez, J., Oliveira, T., Hidalgo 

Sánchez, L., Lagane, C., Lavado, W., Noriega, L., and Pombosa, R.: Amazon River dissolved load: 

temporal dynamics and annual budget from the Andes to the ocean, Environ. Sci. Pollut. R., 23, 

10.1007/s11356-015-5503-6, 2016. 

Moquet, J.-S., Crave, A., Viers, J., Seyler, P., Armijos, E., Bourrel, L., Chavarri, E., Lagane, C., 1025 

Laraque, A., Lavado, W., Pombosa, R., Noriega, L., Vera, A., and Guyot, J.-L.: Chemical weathering 

and atmospheric/soil CO2 uptake in the Andean and Foreland Amazon basins, Chem. Geol., 287, 1–26, 

10.1016/j.chemgeo.2011.01.005, 2011. 

Müller, R. D., Mather, B., Dutkiewicz, A., Keller, T., Merdith, A., Gonzalez, C. M., Gorczyk, W., and 

Zahirovic, S.: Evolution of Earth’s tectonic carbon conveyor belt, Nature, 605, 629-639, 1030 

10.1038/s41586-022-04420-x, 2022. 

Muñoz Sabater, J.: ERA5-Land monthly averaged data from 1950 to present [dataset], 

10.24381/cds.68d2bb30, 2019. 

Park, Y., Maffre, P., Godderis, Y., Macdonald, F., Anttila, E., and Swanson-Hysell, N.: Emergence of 

the Southeast Asian islands as a driver for Neogene cooling, P. Natl. Acad. Sci. USA, 117, 1035 

https://doi.org/10.5194/gmd-2023-199
Preprint. Discussion started: 24 November 2023
c© Author(s) 2023. CC BY 4.0 License.



 35 

10.1073/pnas.2011033117, 2020. 

Phillips, J.: The convenient fiction of steady-state soil thickness, Geoderma, 156, 389-398, 

10.1016/j.geoderma.2010.03.008, 2010. 

Prentice, I. C. and Webb III, T.: BIOME 6000: reconstructing global mid-Holocene vegetation patterns 

from palaeoecological records, J Biogeogr, 25, 997-1005, https://doi.org/10.1046/j.1365-1040 

2699.1998.00235.x, 1998. 

Prentice, I. C., Jolly, D., and participants, B.: Mid-Holocene and glacial-maximum vegetation 

geography of the northern continents and Africa, J Biogeogr, 27, 507-519, 

https://doi.org/10.1046/j.1365-2699.2000.00425.x, 2000. 

Quye-Sawyer, J., Whittaker, A. C., and Roberts, G. G.: Calibrating fluvial erosion laws and quantifying 1045 

river response to faulting in Sardinia, Italy, Geomorphology, 370, 107388, 

https://doi.org/10.1016/j.geomorph.2020.107388, 2020. 

Raymo, M. E. and Ruddiman, W. F.: Tectonic Forcing of Late Cenozoic Climate, Nature, 359, 117-122, 

1992. 

Riebe, C. S., Kirchner, J. W., and Finkel, R. C.: Erosional and climatic effects on long-term chemical 1050 

weathering rates in granitic landscapes spanning diverse climate regimes, Earth Planet. Sc. Lett., 224, 

547-562, 10.1016/j.epsl.2004.05.019, 2004. 

Royden, L. and Taylor Perron, J.: Solutions of the stream power equation and application to the 

evolution of river longitudinal profiles, J. Geophys. Res-Earth., 118, 497-518, 

https://doi.org/10.1002/jgrf.20031, 2013. 1055 

Rudnick, R. and Gao, S.: Composition of the Continental Crust. Treatise Geochem 3:1-64, Treatise on 

Geochemistry, 1-64 pp., 10.1016/B0-08-043751-6/03016-4, 2003. 

Scotese, C. R. and Wright, N.: PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the 

Phanerozoic PALEOMAP Project, https://www.earthbyte.org/paleodem-resource-scotese-and-wright-

2018/, 2018. 1060 

Shao, Y., Anhäuser, A., Ludwig, P., Schlüter, P., and Williams, E.: Statistical reconstruction of global 

vegetation for the last glacial maximum, Global Planet. Change, 168, 67-77, 

https://doi.org/10.1016/j.gloplacha.2018.06.002, 2018. 

Small, E., Anderson, R., and Hancock, G.: Estimates of the rate of regolith production using 10Be and 

26Al from an alpine hillslope, Geomorphology, 27, 131–150, 10.1016/S0169-555X(98)00094-4, 1999. 1065 

Stallard, R. F.: River Chemistry, Geology, Geomorphology, and Soils in the Amazon and Orinoco 

Basins, in: The Chemistry of Weathering, edited by: Drever, J. I., Springer Netherlands, Dordrecht, 

293-316, 10.1007/978-94-009-5333-8_17, 1985. 

Stallard, R. F. and Edmond, J. M.: Geochemistry of the Amazon: 1. Precipitation chemistry and the 

marine contribution to the dissolved load at the time of peak discharge, J. Geophys. Res-Oceans., 86, 1070 

9844-9858, https://doi.org/10.1029/JC086iC10p09844, 1981. 

Stallard, R. F. and Edmond, J. M.: Geochemistry of the Amazon: 2. The influence of geology and 

weathering environment on the dissolved load, J. Geophys. Res-Oceans., 88, 9671-9688, 

https://doi.org/10.1029/JC088iC14p09671, 1983. 

Strudley, M., Murray, A. B., and Haff, P.: Emergence of pediments, tors, and piedmont junctions from a 1075 

bedrock weathering-regolith thickness feedback, Geology, 34, 805-808, 10.1130/G22482.1, 2006. 

Suchet, P. and Probst, J.-L.: A global model for present-day atmospheric/soil CO2 consumption by 

chemical erosion of continental rocks (GEM-CO2), Tellus B., 47, 273-280, 10.1034/j.1600-

0889.47.issue1.23.x, 2002. 

https://doi.org/10.5194/gmd-2023-199
Preprint. Discussion started: 24 November 2023
c© Author(s) 2023. CC BY 4.0 License.



 36 

Syvitski, J. and Milliman, J.: Geology, Geography, and Humans Battle for Dominance over the 1080 

Delivery of Fluvial Sediment to the Coastal Ocean, J. Geol., 115, 10.1086/509246, 2007. 

Walker, J. C. G., Hays, P. B., and Kasting, J. F.: A negative feedback mechanism for the long-term 

stabilization of Earth's surface temperature, J. Geophys. Res-Oceans., 86, 9776-9782, 

https://doi.org/10.1029/JC086iC10p09776, 1981. 

Wang, G., Feng, X., Han, J., Zhou, L., Tan, W., and Su, F.: Paleovegetation reconstruction using 1085 

δ<sup>13</sup>C of Soil Organic Matter, Biogeosciences, 5, 1325-1337, 10.5194/bg-5-1325-2008, 

2008. 

West, A. J.: Thickness of the chemical weathering zone and implications for erosional and climatic 

drivers of weathering and for carbon-cycle feedbacks, Geology, 40, 811-814, 10.1130/g33041.1, 2012. 

West, A. J., Galy, A., and Bickle, M.: Tectonic and climatic controls on silicate weathering, Earth 1090 

Planet. Sc. Lett., 235, 211-228, 10.1016/j.epsl.2005.03.020, 2005. 

Whipple, K., Heimsath, A., and DiBiase, R.: Soil production limits and the transition to bedrock-

dominated landscapes, Nat. Geosci., 5, 210-214, 10.1038/ngeo1380, 2012. 

White, A. F. and Blum, A. E.: Effects of climate on chemical_ weathering in watersheds, Geochim. 

Cosmochim. Ac., 59, 1729-1747, https://doi.org/10.1016/0016-7037(95)00078-E, 1995. 1095 

White, A. F. and Brantley, S. L.: The effect of time on the weathering of silicate minerals: Why do 

weathering rates differ in the laboratory and field?, Chem. Geol., 202, 479-506, 

10.1016/j.chemgeo.2003.03.001, 2003. 

Wittmann, H., Oelze, M., Gaillardet, J., Garzanti, E., and Blanckenburg, F.: A global rate of denudation 

from cosmogenic nuclides in the Earth's largest rivers, Earth-Sci. Rev., 204, 103147, 1100 

10.1016/j.earscirev.2020.103147, 2020. 

Wittmann, H., Blanckenburg, F., Bourgoin, L., Guyot, J.-L., Filizola Jr, N., and Kubick, P. W.: 

Sediment production and delivery in the Amazon River basin quantified by in situ produced 

cosmogenic nuclides and recent river loads, Geol. Soc. Am. Bull., 123, 934-950, 10.1130/B30317.1, 

2011. 1105 

Wittmann, H., Blanckenburg, F., Dannhaus, N., Bouchez, J., Gaillardet, J., Guyot, J.-L., Bourgoin, L., 

Roig, H., Filizola Jr, N., and Christl, M.: A test of the cosmogenic 10 Be(meteoric)/ 9 Be proxy for 

simultaneously determining basin-wide erosion rates, denudation rates, and the degree of weathering in 

the Amazon basin, J. Geophys. Res-Earth., 120, n/a-n/a, 10.1002/2015JF003581, 2015. 

Woillez, M. N., Kageyama, M., Krinner, G., de Noblet-Ducoudré, N., Viovy, N., and Mancip, M.: 1110 

Impact of CO2 and climate on the Last Glacial Maximum vegetation: results from the 

ORCHIDEE/IPSL models, Clim. Past, 7, 557-577, 10.5194/cp-7-557-2011, 2011. 

Yao, Y.-F., Bera, S., Ferguson, D. K., Mosbrugger, V., Paudayal, K. N., Jin, J.-H., and Li, C.-S.: 

Reconstruction of paleovegetation and paleoclimate in the Early and Middle Eocene, Hainan Island, 

China, Climatic Change, 92, 169-189, 10.1007/s10584-008-9457-2, 2009. 1115 

Zeichner, S. S., Nghiem, J., Lamb, M. P., Takashima, N., de Leeuw, J., Ganti, V., and Fischer, W. W.: 

Early plant organics increased global terrestrial mud deposition through enhanced flocculation, 

Science, 371, 526-529, doi:10.1126/science.abd0379, 2021. 

Zhang, M., Liu, Y., Zhu, J., Wang, Z., and Liu, Z.: Impact of Dust on Climate and AMOC During the 

Last Glacial Maximum Simulated by CESM1.2, Geophys. Res. Lett., 49, 10.1029/2021GL096672, 1120 

2022a. 

Zhang, S., Bai, X., Zhao, C., Tan, Q., Yun, L., Wang, J., Li, L., Wu, L., Chen, F., Li, C., Deng, Y., Yang, 

Y., and Xi, H.: Global CO2 Consumption by Silicate Rock Chemical Weathering: Its Past and Future, 

https://doi.org/10.5194/gmd-2023-199
Preprint. Discussion started: 24 November 2023
c© Author(s) 2023. CC BY 4.0 License.



 37 

Earths Future, 9, 10.1029/2020EF001938, 2021. 

Zhang, Y., Mills, B., Yang, T., He, T., and Zhu, M.: Simulating the long-term carbon cycle in the 1125 

Phanerozoic: current status and future developments. 显生宙长时间尺度碳循环演变的模拟：现状

与展望, Chinese Journal, 10.1360/TB-2022-0813, 2022b. 

Zhao, L., Guo, Z., Yuan, H., Wang, X., Shen, H., Yang, J., Sun, B., Tan, N., Zhang, H., Liu, Y., Li, Y., 

Wang, J.-M., Ji, W.-Q., and Zhu, R.: Dynamic modeling of tectonic carbon processes: State of the art 

and conceptual workflow, Sci. China Earth Sci., 66, 10.1007/s11430-022-1038-5, 2022. 1130 

 

https://doi.org/10.5194/gmd-2023-199
Preprint. Discussion started: 24 November 2023
c© Author(s) 2023. CC BY 4.0 License.


